
Ab-A1SS 154 RESEARCH ON PROBLEM-SOLVING SYSTENS(U) SRI in2
INTERNATIONAL NMNLO PARK CA ARTIFICIAL INTELLIGENCE
CENTER 0 E NILK INS FED 66 AFOSR-TR-90-0563

UNCLASIFIED F492S4SKJSIF/O 12/9 NL

mhhhhmhhmmmhhl



1111 .0L.' 2.5

11151 _1.4

%~ B I. .1 1;
46%



iTIC FILE- CUY

RESEARCH ON PROBLEM-SOLVING
SYSTEMS

,- Final Report 63

Covering the Period October 1, 1984 to February 14, 1988

February 1988

By: David E. Wilkins, Senior Computer Scientist-
Representation and Reasoning Program

Artificial Intelligence Center
Computer and Information Sciences Division

Prepared for:

Air Force Office of Scientific Research
Building 410
Boiling Air Force Base
Washington, D.C. 20332

Attention: Dr. Abe Waksman

AFOSR Contract No. F49620-85-D-0001
SRI Project 7898 DTIC

SRI International MA 0 18
333 Ravenswood Avenue
Menlo Park, California 94025-3493
(415) 326-6200
TWX: 910-373-2046
Telex: 334486

.. ... b e d m o . . .

Ifteratlo '!A n: -C&10=1 cb d Saw ap@U
88g 16 127



&NLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Ia. R P6kl 1 S nlIb. RESTRICTIVE MARKINGS (p aeJn3.78

2a. SECURITY C IJWIqV' R 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRAOING SCHEDULE Approved for Public Release
Distribution Unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

SR INTERNATIONAL AICThe Air Force Office of Scientific

6c. ADDRESS (City. State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

333 RAVENSWOOD AVENUE Bldg 410

MENLO PARK, CALIFORNIA 94025 Bolling AFB, DC 20332

8a. NAME OF FUNDINGiSPONSORING 1 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) F -.
AFOSR NM___________________

8c. ADDRESS (City, State, and ZIP Code) 4 tO10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

BOLLING AFB, WASHINGTIN D.C. 20332 ELEMENT NO. NO. NO. ACCESSION NO.

t 61102F 2304 A7
11. TITLE (Include Secunty Classiication)

RESEARCH ON PROBLEM-SOLVING SYSTEMS

12. PERSONAL AUTHOR(S)

DR. DAVID E. WILKINS
13a. TYPE OF REPORT 13b. TIME COVERED 114 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Final F FROM 0/l/8 4 To 2/14/88 FEBRUARY 1988 156

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This is the final report for a research project which focused on artificial
intelligence planning systems. The research investigated methods for
representing, generating, and executing hierarchical plans that contain para-
llel actions. Reasoning about actions is critical to many important areas
including automatic planning systems, expert consultation systems, and real-
time control of robotic systems. This report describes progress in planning,
including efficient technqiues for generating hierarchical and parallel plans
in certain domains. This work was performed using SIPE (Sytem for Inter-
active Planning and Execution Monitoring) which was developed in part
under this contract.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

QJ UNCLASSIFIED/IUNLIMITED 3 SAME AS RPT. 0 0( .SERS Tnr-l4c: f i =A
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Inclui,4& Are Cd e)22c. OFFICE SYMBOL

James M.Crowley, Maj, USAF (0) 767-5025 AFOSR/NM

00 FORM 1473, 84 MAR 83 APR edition may e useod until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

UNCEASSIFIFD.. -.. ," S"-,,. !v .-.-. -, ,-. .,;.-/.¥;:. .; ; '-- ';.'>-;' 7 ;-:,',:-.',," ,.-.It III,,! ghv,' e.46,"6if..""



RESEARCH ON PROBLEM-SOLVING
L"JSYSTEMS

Final Report

0 Covering the Period October 1, 1984 to February 14, 1988

February 1988

( r By: David E. Wilkins, Senior Computer Scientist

Representation and Reasoning Program

Artificial Intelligence Center
Computer and Information Sciences Division

Prepared for:

Air Force Office of Scientific Research
Building 410
Boiling Air Force Base ________For

Washington, D.C. 20332 4 S" CRA&I

Attention: Dr. Abe Waksman TAB [

J ..',Cation
AFOSR Contract No. F49620-85-D-0001 ...

SRI Project 7898

A p p ro v e d : " .., ,i b l;ty C o . 'e S

- ," -, p c -

~Stanley J. Rosenschein, Director /

Artificial Intelligence Center _

Donald L. Nielson, Vice President
~~Computer and Information Sciences Division i



Acknowledgments

Thanks to the Air Force Office of Scientific Research for supporting this work under con-

tracts F49620-79-C-0188 and F49620-85-K-0001. The SRI International Artificial Intelligence

Center provided the open, cooperative environment that encourages new ideas, a state-of-the-

art computing environment, and support for the implementation of the graphical interface.

Special thanks go to Stan Rosenschein, Nils Nilsson, and Michael Georgeff for technical lead-

ership, Marietta Elliott for administrative leadership, and Paul Martin and Mabry Tyson

for the computing environment. Ann Robinson helped formulate the original conception of

SIPE, and Michael Georgeff has greatly influenced both the development of SIPE and the

ideas expressed in this paper.

6

-', -

,F.

'"F

. % % % . .



Contents
.. A

.. JA

1 Introduction 1

2 Basic Assumptions and Limitations 5

2.1 Important Features. .. .. .. .... ... .... .... ... .... ... ... 7

2.2 SRI's Graphical Interface .. .. ... .... .... ... .... ... ........ I

2.3 Limitations .. .. ... ... .... ... .... ... .... ... .... .... 13 '

3 SIPE and its Representations 15

3.1 Representation of Domain Objects and Relationships .. .. .. ... .... .. 18

3.2 Operator Description Language .. .. .. .... ... .... ... .... .... 19
3.2.1 Arguments. .. .. .... .... ... .... ... .... ... ..... 210

3.2.2 Preconditions. .. .. ... ... .... ... .... ... .... ..... 21

3.2.3 Plots. .. .. .. .... ... .... ... .... ... .... ... .... 22

3.3 Plan Rationale. .. .. ... .... .... ... .... ... .... ... .... 24

3.4 Plans. .. .. .. ... .... ... .... ... .... .... ... .... .... 27

4 Constraints 32

4.1 SIPE's Constraint Language .. .. .. ... .... ... .... ... .... .. 33

4.2 Using Constraints. .. .. .. ... .... ... .... .... ... .... .... 36
4.3 Unification. .. ... ... .... ... .... ... .... ... .... ..... 38

5 The Truth Criterion 40

5.1 The Formula Truth Criterion .. .. .. ... ... ... ... ... ... .. .. 42

5.2 Introducing Variables .. .. .... ... .... ... .... ... .... .... 43

5.3 Introducing Existential Quantifiers. .. .. ... .... ... .... .... .. 47

5.4 Introducing Universal Quantifiers .. .. .. ... .... .... ... .... .. 49

P

*AAN
% "0



-Y>.* X -6V1J l - F.; -.. W; 4.b - Ik. w XF

5.5 Introducing Nonlinearity. .. .. .. .. ... ... ... ... .. ... ... .. 52

5.6 Summary .. .. .. ... ... ... ... .. ... ... ... ... ... ..... 55

I
6 Deductive Causal Theories 56 .

6.1 A Motivating Example. .. .. .. .. ... ... ... ... .. ... ... .... 57

6.2 Domain rules .. .. .. ... ... .. ... ... ... ... ... ... ... ... 59

6.3 Problems .. .. .. ... ... ... ... ... .. ... ... ... ... ..... 62

6.4 Heuristic Adequacy and Expressive Power .. .. .. .. ... ... ... ..... 63

7 Hierarchical Planning as Differing Abstraction Levels 67

7.1 The Many Guises of Hierarchical Planning .. .. .. .. .. ... ... ... .. 68

7.2 A Problem with Current Planners .. .. .. ... ... ... ... ... .. .. 70 I

7.2.1 Abstraction Levels in the Robot Domain .. .. .. .. .. ... ... .. 71

7.2.2 Coordinating Abstraction Levels .. .. .. ... .. ... ... ... .. 73

7.3 Solutions. .. .. ... ... ... .. ... ... ... ... ... ... ... ... 73

7.3.1 Delaying Operator Applications in SIPE .. .. .. .. ... ... ..... 75

7.3.2 Introducing Low-Level Predicates. .. .. .. .. ... ... ... .. .. 77

7.3.3 Comparison of Solutions .. .. .. .. ... .. ... ... ... ... ... 79

8 Search 81
8.1 Automatic Search .. .. .. .. .. ... ... ... ... ... ... ... .. .. 82

8.2 Intermingling Planning and Execution .. .. .. .... ... .... ... ... 84

8.3 Interactive Control .. .. .. ... .... ... .... ... .... ... ..... 86

8.4 Domai n- Dependent Search Control. .. .. ... ... .... ... .... .... 86

9 Plan Critics 88

9.1 Solving the6 Constraint Network .. .. .. ... ... .... ... .... ...... 9

9.2 Parallel Interactions. .. .. .... ... ... .... ... .... ... ..... 90

9.3 Goal Phantomnization .. .. .. .. .. ... ... ... ... ... ... ... ... 92

9.4 Solving Harmful Interactions .. .. ... ... .... ... .... ... ..... 95

9.5 Adding Ordering Constraints .. .. .. .... ... .... ... .... ..... 97

9.6 Examples .. .. ... ... .... ... .... ... .... ... .... ..... 98

10 Resources: Reusable, Consumable, Temporal 105 I

:.1
%. . . . . ...-. A



10.1 Reusable Resources .. .. .. .. ... ... ... ... ... ... ... .. ... 107

10.2 Representation of Numerical Quantities.... .. .. .. .. .. .. .. .. .. .. 1

10.3 Consumable Resources .. .. .. ... ... .. ... ... ... ... ... .... 114 -

10.4 Temporal Reasoning .. ... ... ... ... ... ... .. ... ... ..... 120

10.5 Manipulating Numerical Quantities. .. .. .. ... ... .. ... ... ..... 121

10.6 Summary .. .. ... .. ... ... ... ... ... ... ... ... .. ..... 124

11 Replanning During Execution 125

11.1 Overview of SIPE's Execution- Monitoring System .. .. ... ... ... ..... 27

11.2 Unknowns. .. .. .. ... ... ... ... ... .. ... ... ... ... ... 128

11.3 Interpreting the input. .. .. ... ... ... ... ... .. ... ... ...... 29

11.4 The Problem Recognizer. .. .. .. ... ... ... ... .. ... ... ..... 130

11.5 Replanning Actions .. .. .. .. ... ... ... ... .. ... ... ... ... 134

11.5.1 Reinstantiation of Variables. .. .. .. ... ... ... ... .. ..... 136

11.5.2 Removing Wedges from Plans. .. .. .. ... ... .. ... ... ... 138 4

11.6 Guiding the Replanning. .. .. ... .. ... ... ... ... ... ... .... 141

11.7 Examples .. .. .. ... ... ... ... ... ... ... .. ... ... ..... 142

11.8 Searching the Space of Modified Plans .. .. .. ... ... ... ... .. ... 145

11.9 Summary .. .. .. ... ... ... ... ... ... ... ... .. ... ..... 147

12 Summary 149 '%
4%,

13 Publications 152

ivP

6a

bl. - - - - - - - --
.. . * % N 

1
% 

4-.



Y.Vm.

,a,

W

a.

a,'

Chapter 1

Introduction

Research on planning systems sponsored by AFOSR in SRI International's Artificial Intelli- ""

gence Center addresses the problem of reasoning about actions in an efficient manner. This

research was begun in September 1979 under AFOSR sponsorship (SRI Project 8871, Con-

tract No. F49620-79-C-0188). A continuation project covering the same line of work was

initiated in October 1984 (SRI project 7898, Contract No. F49620-85-K-0001). SRI's main

task under this program has been to develop powerful methods of representing, generating,

and executing hierarchical plans that contain parallel actions. Execution involves monitor-

ing the state of the world and, possibly, replanning if things do not proceed as expected.

Since 1979, SRI has designed and implemented a system called SIPE (System for Interactive

Planning and Execution Monitoring), the purpose of which is to expand our approach to

this problem and demonstrate its heuristic adequacy. This report describes the entire SIPE

system and the design decisions behind it, effectively summarizing all research results since

1979. '"a

Reasoning about actions is of critical importance, and is a core problem in artificial intel-

ligence (AI). Research results are potentially applicable to many important areas. Examples

of particular interest to the Air Force include automatic planning systems (as might be used

in command and control applications or to plan air operations), computational systems for

aiding a flight crew, expert consultation systems, and real-time control of robotic systems

(such as remotely piloted or autonomous vehicles). Other areas which depend on reason-

ing about actions include automatic programming (program synthesis) and natural-language

understanding (which often requires knowing the plans of the speaker).

0a
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One core problem is common to all reasoning about actions. This central problem is

determining how a complex world is affected by an event that occurs in the world, so that

a system can reason about the world both as it was before the event and as it will be after

the event. We will refer to this rather broad problem as the frame problem, although others

define that term in many different ways, often referring to a much niore specific lpro)leii_

(which is generally one of the many problems that must be addressed by our broad problem).

The frame problem is what makes reasoning about actions inherently dificult, and what

distinguishes reasoning about actions from similar problems that do not require that this

problem be addressed. For example, many scheduling problems require constraints to be

satisfied so that schedules can be correctly met, but do not require that th, system rea son 0

about how the world changes as scheduled events occur. Scheduling problems can be very

difficult and are certainly important, but they are simpler than problems that also require

reasoning about the effects of actions. Recently, the term "planning" has heen used by many _

people to refer to a broad range of problems and techniques. These range fromi application of 0

control theory in robot control to the solution of constraint satisfaction problems to expert

systems. We consider reasoning about how actions affect the world to be the heart of the

planning problem, and restrict our use of the term "planning" to approaches that ad(dress

this problem. 0

Recent developments -- particularly during the course of work at SRI supported by this -

project -- include efficient techniques for generating hierarchical as well as p)arallel plans in

certain domains. Domain-independent planners yield planning techniques that are al)l)licable

in many domains and provide a general planning capability. Such a general planniing ca)a-

bility is likely to require techniques different from those used by an expert planning in his

particular domain of expertise, but it is nonetheless essential for people in their daily lives

and for intelligent programs. Much related planning research involves development of logical •

formalisms that are theoretically correct and complete, but that have little hope of efficient

implementation. By contrast, heuristic adequacy is one of the goals of our research.

SIPE has extended the classical Al planning paradigm farther than any other systemi. N,.

The classical definition of the planning problem assumes a state-based representation and

takes as input a description of the initial state, a description of a set of actions (operators),

a goal descriptor, and a set of sentences describing the domain (e.g., frame axioms, domain %

constraints), and requires the planner to produce as output a sequence of actions that, when

2
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initial state, will result in the goal being achieved. The classical AI planning paradigm also

supports hierarchical, nonlinear plans, and views planning as a search through the space of

operator applications and plan orderings. NOAH [27] and STRIPS [6] mark the beginning of .

this approach, and their ideas inspired most planning research for more than a decade. Many Wa

systems developed this paradigm further - NONLIN [31], DEVISER [33], and SIPE [36]

perhaps being the most important. NOAH is the ancestor of this approach since it produces -

nonlinear, hierarchical plans, but the root of the solution to the frame problem in all these a.

systems is found in STRIPS. The STRIPS assumption [34] is at the heart of the efficiency

achieved by the above systems, as well as the cause of many of their limitations. Some of

these systems, notably SIPE, modify the STRIPS assumption radically enough to avoid some

of its pitfalls.

SIPE has become a state-of-the-art planning system during its development at SRI under

AFOSR sponsorship. It provides a domain-independent formalism for describing a domain at S

different levels of abstraction, including both actions that can be taken and goals that can be

achieved. It extends the classical Al planning approach by reasoning about resources, posting

constraints, and using a deductive causal theory to represent and reason efficiently about

different world states. SIPE retains much of the efficiency of the STRIPS assumption while

avoiding some of its disadvantages through the use of the above mechanisms. The system

automatically, or under interactive control, generates [possibly nonlinear] plans containing

conditionals to achieve goals in an initial situation. It can intermingle planning and execution,

and accepts arbitrary descriptions of unexpected occurrences during execution and modifies

its plan to take these into account.

The difficulty of the planning problem should not be underestimated. Chapman [4] has

shown that determining the truth of a proposition in a nonlinear plan (i.e., a plan in which

some actions are unordered with respect to each other) is NP-hard, even with a very restricted

representation, as long as the representation allows actions whose effects depend on the input

situation (as SIPE does). Given the extensions SRI has made to previous planners, there are

several combinatorial problems, in addition to the truth criterion, that must be solved. SIPE's

unification problem also becomes combinatorial with its reasonably powerful constraints on

variables. The problem of parallel interactions, the system's resource allocation problem, the

deduction of context-dependent effects, the search through the space of possible plans, and

the search through modified plans during replanning are all combinatorial. Restrictions on "

3 a'"
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SIPE's representations have been combined with heuristics and algorithms in order to provide

a useful planner that addresses all the above problems while remaining efficient. 0

While we will discuss the theoretical foundations of SIPE in this report, they will not be

our major focus. The major focus will be the communication of the planning technology de-

veloped during work on SIPE to other planning researchers. We explain the basic assumptions

underlying SIPE (and the reasons for them), and the kinds of domains for which this planning

style is and is not suited. The major modules in SIPE will be described so that others can

understand how they work and why they were designed as they now exist. These modules %

include the plan critics, the execution monitor and replanner, the algorithm for determining

the truth of a formula, the capability for specifying a deductive causal theory of the domain,

resource allocation and constraint satisfaction, and the newly implemented capabilities for

reasoning about numerical quantities. The heuristics developed and the tradeoffs considered

in making them are of primary interest and constitute the major part of this report.

,.

.'

4

%%



Chapter 2

Basic Assumptions and Limitations

SIPE is a Zetalisp program that has been developed over several years and runs on the

Symbolics 3600 family of machines. It has produced correct plans in several different domains,

including the standard block world, several extensions of the block world (e.g., one with blocks

of different weights in which the robot consumes fuel as a function of the weight it is moving),

cooking, aircraft operations, travel planning, construction of objects in a machine shop, and

an indoor mobile-robot domain. Block-world problems that permit more than one block to

be on top of another are solved in one or two seconds on a Symbolics 3600, providing a scale

for our claims of heuristic adequacy.

The robot domain will be used in several examples in this report, so a brief description

of it is in order. SRI International has built a mobile robot, Flakey, which is used as a

testbed for several projects and roams the halls of the Artificial Intelligence Center (AIC).

In an effort to provide Flakey with a high-level planning capability, we have encoded in

SIPE a domain consisting of five rooms connected by a hallway in the AIC, the robot itself,

and various objects. The rooms were divided into 35 symbolic locations, and the initial

world is described by 222 predicate instances. The description of possible actions in SIPE

includes 25 action-describing operators and 25 deductive rules. The operators use four levels

of abstraction in the planning process, as described in Chapter 7. The planner produces

primitive plans that provide commands, executable by Flakey, for controlling the robot's

motors.

Planning to such a low level of abstraction consumes considerable computational re-

5



sources. To solve a problem requiring the robot to retrieve an object from one room and

deliver it to another typically requires the planner to generate hundreds of goal nodes (just

to generate one plan, not to search through alternatives), yet SIPE takes about 30 seconds

to completely formulate such a plan. By taking advantage of the system's ability to inter-

mingle planning and execution, a plan can be ready for execution in only 9 seconds. This

is acceptable performance as the robot requires several seconds to move down the hall. Pre-

vious classical planners have not been tried on problems of this size, in most cases because

such problems cannot be effectively handled. Many planners that use frame axioms or cir-

cumscription instead of the STRIPS assumption have combinatorial problems and currently

have no hope of producing a plan of this complexity in a matter of seconds. We know of no

planning system that approaches the speed of SIPE on a problem as complex as this.

SIPE builds upon the classical Al planning work exemplified by Sacerdoti's NOAII, Tate's

NONLIN, and Fikes and Nilsson's STRIPS. While its representations and algorithms have

almost nothing to do with these systems, SIPE accepts the classical definition of planning

given in Chapter 1 (implying a lack of reactivity during plan time), and supports hierarchical,

nonlinear plans. The system takes as input a description of the initial state in a restricted form

of first-order predicate calculus together with a sort hierarchy that encodes static knowledge,

and a description of actions, goals, and domain knowledge in language provided by SIPE. The

system automatically, or under interactive control, generates plans (i.e., sequences of known

actions) to achieve the given goals and supports replanning after unexpected occurrences

during execution. SIPE makes the closed-world assumption: any negated predicate is true

unless the unnegated form of the predicate is explicitly given. While this is not critical, it

makes the specification of domains much easier since there may be an enormous number of

predicates that are not true and it may not be possible to summarize all these concisely

within our representation.

One of the primary design principles of the system has been heuristic adequacy. To

obtain a useful planner, we have opted for restrictions on representations and algorithms and

heuristics that will make the system heuristically adequate without destroying its usefulness.

The goal is to have a representation that is rich enough so that many interesting domains

can be represented (an advantage of logical formalisms), but this goal must be measured

against the system's ability to deal with its representations efficiently during the planning

process. Tradeoffs considered in creating these restrictions will be described throughout this

;' n6
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report as they impact almost every part of the planner. SIPE can be viewed as providing

tools that are useful for solving planning problems. These tools may not themselves be sound

and complete, and they may not match exactly with the user's problem domain, but with a

proper encoding of the domain these tools can be powerful aids in producing correct plans

efficiently.

2.1 Important Features

Two important and common, but complex, features of planning systems are central in SIPE:

planning at different levels of abstraction (also known as hierarchical planning) and nonlin-

ear plans (including possibly parallel actions). Planning in abstract spaces is necessary in

real-world domains, since it helps avoid the tyranny of detail that would result from planning

at the most primitive level. The planner can significantly reduce the search space by forming

abstract plans and then expanding these into more detailed plans. Chapter 7 contain, a gen-

eral discussion of hierarchical planning that enumerates its many uses in various systems. It

describes a problem, uncovered during an application of SIPE, that applies to all hierarchical

planners, and presents several solutions implemented in our system.

Nonlinear plans are also necessary for most real-world domains. Even for single agent

domains, correct plans will be achieved only by ordering actions during the planning process.

Actions can often remain unordered until such time as the planner discovers the order it

wishes to impose. In addition, SIPE allows parallel actions, meaning that actions can remain 'p
unordered in the final plan and the system will assure that no harmful interactions occur. A

linear planner could search the space of all possible orderings without explicitly representing

unordered actions, but this requires exponentially more backtracking. Furthermore, real-

world domains are often multieffector or multiagent (e.g., having two robot arms to construct,.

an object, or two editors to work on your report), and the best plans should use these

agents in parallel whenever possible. For these reasons, SIPE supports nonlinear plans;

however, this incurs a substantial cost as it leads to an NP-complete truth criterion under

the conditions described by Chapman, although this is almost certainly preferable to the

exponential search of a linear planner. The way in which SIPE's truth criterion avoids this

complexity is described below and in Chapters 4 and 5.

A planning system that allows parallel actions must be able to reason about how actions

7
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interact with one another, since interference between parallel actions may prevent the plan

from accomplishing its goal. This is a major problem for planning systems, and distinguishes

planning from much of the work in program synthesis, since the goal there is often a strictly

sequential program. SIPE solves the interaction problem by extending the idea of plan critics

introduced by NOAI. After each level of planning, the system may produce invalid plans, but

it then applies critics which check for problems such as parallel interactions and unsatisfiable S

constraints. If problems are detected by the critics, solvers are applied to modify the plan,

possibly adding ordering constraints to the parallel actions. Solvers in SIPE are more powerful
.1

than those in previous classical planners, as they use the replanning actions of the execution

monitor to modify plans, possibly removing subplans in order to make more optimal plans.

The critics and solvers are discussed further in Chapter 9. Because invalid plans are produced

and then corrected, the idea of defining conditions that make operators sound, as Lifschitz

attempts to do for STRIPS [171, is not directly applicable.

One of SIPE's primary contributions is the use of resource reasoning to help solve the

parallel interaction problem (described in Chapter 10). Much of the work done by plan critics

in previous planners, e.g., the resolve-conflicts critic in NOAtt, is accomplished by resource

reasoning in our system. Both reusable and consumable resources are supported. When

actions declare objects as resources, the system can quickly detect resource conflicts and .

linearize the contending parallel actions. While the concept of resources in SIPE is limited,

it is nevertheless quite useful both in the representation of domains and in finding solutions

efficiently.

The nucleus of SIPE's quest for heuristic adequacy is its efficient truth criterion. The

latter is based on the STRIPS assumption, which is also used by many seminal planners such

as STRIPS, NOAI, and NONLIN. The (strict) STRIPS assumption is that no predicate

will change its truth value when an event takes place unless the event explicitly lists that r

predicate on its add or delete lists. As we shall see, this strict assumption adversely affects

the specification of operators (i.e., a planner's representation of actions or events), making

them awkward or impossible to describe, especially as domains grow more complex. SIPE

alleviates these problems through its use of constraints, resources, and domain rules. Domain 1

rules, which are described in detail in Chapter 6, are used to deduce the effects of an event

that are conditional on the current situation and cannot therefore be mentioned in add or

delete lists. They permit effective representation of a causal thcory of the domain, similar

A A -



to that advocated by Dean [5]. By allowing knowledge of cause-and-effect relations to be

specified independently of the operators, both the operators and the planning process are •

simplified. Since conditional effects are deduced, operators are applicable over a much wider

range of situations. This makes it much easier for the user to express his domain knowledge

as SIPE operators.

The truth criterion also provides a mechanism for circumventing the poor performance

that is caused by the need to solve a NP-complete problem when determining the truth of

predicates over parallel actions. The system allows the user to distinguish between main

effects and side effects of an action, and does not consider all possible shuffles of parallel ac-

tions when matching predicates that occur in side effects. The system guarantees correctness

over parallel actions only when matching predicates that are given as main effects. For pred-

icates occurring in the side effects of a parallel action, the truth criterion proves that there

is one possible ordering of the parallel actions that makes the predicate true without enforc-

ing that order. There are mechanisms for preventing the system from making contradictory

assumptions about different orderings as planning proceeds. This has proved to be a useful

compromise that provides the user with enough tools to produce useful plans efficiently. The

truth criterion and the tradeoffs it involves are described in detail in Chapter 5.

One of SIPE's most important advances over previous domain-independent planning sys-

tems is its ability to post constraints in order to construct partial descriptions of unspecified

objects. This ability is important both for domain representation and for finding solutions

efficiently (since decisions can be delayed until partial descriptions provide more informa-

tion). Chapter 4 describes the constraint language, explains how it is incorporated into the

system, and compares it with other systems. Almost no previous domain-independent plan-

ning systems have used this approach (e.g., NOAH cannot partially describe objects), and

domain specific systems which use constraints, such as MOLGEN [29], generally deal with

constraints that are also domain specific.

The use of constraints can be viewed as extending the idea of "least commitment" plan-

ning. The idea behind least commitment planning is to delay decisions until you have as

much useful information as possible for making them. This term was first introduced by

Sacerdoti in connection with NOAH. NOAH avoided commitments by using nonlinear plans

to delay ordering decisions. NOAH also did not backtrack, and this feature of the system has

been associated with the term "least commitment" by some people, but these are actually

9
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two completely separate issues - SIPE does backtrack but still follows a least commitment

philosophy. While NOAH delayed ordering decisions, a more powerful representation can

delay decisions in many other situations. SIPE does exactly this by allowing constraints on

its planning variables, whose eventual instantiations can then be chosen more intelligently ?,P

than in a system where a variable is either unbound or instantiated.

SIPE has mechanisms for reasoning about numerical quantities, both continuous and A;.

discrete, which provides the basis for reasoning about producible and consumable resources,

as well as limited forms of temporal reasoning (e.g., specifying constraints on the starting

time of an action). The same representations and algorithms work for both these tasks

because time is considered to be a type of consumable resource - namely, one that can

be consumed but not produced, and whose consumption in the course of parallel tasks is

nonadditive. Numerical reasoning is integrated within the existing framework of adding

constraints to planning variables, allowing the system to employ all its standard algorithms

to solve numerical problems.

Our research has not addressed the issue of intelligent control of the search process. In,/1

part, this is because different searching algorithms will function best in different domains.

Certainly an intelligent search procedure will need domain-dependent heuristics. SIPE im-

plements a straightforward depth-first search with chronological backtracking for generating

plans automatically that permits interleaving of planning and execution. Unlike its prede-

cessors, SIPE provides two other capabilities: a context mechanism that allows easy access

to alternative plans, and interactive control of the search. The former allows the user to S

implement any domain-dependent search strategy he chooses, including a best-first search. "

The latter allows the user to watch and, when he wishes, guide and/or control the planning

or replanning process.

In real-world domains, things do not always proceed as planned, making it necessary to

monitor the execution of a plan and to replan when things do not go as expected. In complex "

domains it becomes increasingly important to use as much as possible of the old plan, rather

than begin again. SIPE's execution monitor accepts arbitrary descriptions of unexpected

events, and is able to determine how they affects the plan being executed. In many cases, it

is able to retain most of the original plan by making changes in it to avoid problems caused by

these unexpected events. It is also capable of shortening the original plan when serendipitous

events occur.
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The most important features of the system are itemized below:

" Domain independence

* Different abstraction levels Si.

* Nonlinear actions

" Powerful plan critics

" Resource reasoning

" Efficient truth criterion

" Deduction of context-dependent effects of actions

" Posting of constraints

" Numerical reasoning

* Interactive or automatic search

" Replanning

2.2 SRI's Graphical Interface

During the past year, SRI International has greatly enhanced a user's ability to use SIPE by

developing (with internal SRI funds) a completely separate module called the SIPE Graphics

Interface. All the planning mechanisms in the SIPE Planning System were implemented

under AFOSR sponsorship. As so implemented, SIPE is run by calling functions from the

terminal and by producing what is essentially teletype output on a terminal. The planning

system and graphical interface together make an integrated system, shown in Figure 2-1

displaying a plan from the robot domain, that is much easier to use.

The SIPE Graphics Interface allows a user to control the planning system from menus, to

display data structures from menus, and to view plans as graphs on the screen. The graphical

display of plans allows the user to change the sizes of nodes in the graphical display, change

types of nodes displayed, and change slots displayed with each node. The graphical output

window is scrollable, so the window can be moved left, right, tip, or down over the displayed

plan. The displayed nodes are mouse-sensitive, and clicking them will cause them to be

displayed in their entirety. The SIPE Graphics Interface makes use of software developed

1
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at SRI for displaying graphs on scrollable windows as implemented in the SRI X-Y Window

Package. Most of this module, which is not unique to SIPE, was written primarily by Josh •

Singer, Mabry Tyson, and Paul Martin. rn

2.3 Limitations

Classical planners are useful for the kind of planning we do in our daily lives when we need

to stop and think about what to do next. This can often be thought of as a type of means-

end analysis. For example, when running several errands, one usually stops to plan the S
order in which they will be done. Classical planners are not well-suited for large scheduling

tasks (for which people may use linear programming techniques), large constraint satisfaction

problems, highly dynamic worlds, or sophisticated reasoning about other agents. Besides

lacking powerful computational techniques for solving the former two problems, most classical

planners, and SIPE in particular, incorporate heuristics for dealing with nonlinear plans that

are more suited for problem-solving tasks (where the object is to find any acceptable solution)

than for scheduling or optimization tasks (see Chapters 5 and 9). While limitations are often

ascribed to classical planners incorrectly, they do have many shortcomings. In this section A

we summarize many of the restrictions incorporated into the SIPE system.

Like other classical planners, SIPE assumes a state-transition approach to representing

a dynamic world. (Although the world is assumed to be not so dynamic that it will change

significantly during plan time.) Actions change the world from one discrete state to another.

For the most part, operators, actions, time, and states are all discrete. SIPE does extend

previous classical planners by allowing conditional plans, replanning after unexpected events,

and providing a capability for reasoning about continuously changing numerical quantities

as part of reasoning about consumable resources (see Chapter 10). The latter permits some

rudimentary forms of reasoning about time and continuous quantities, but sophisticated

reasoning about time and modeling of dynamic processes are not possible within our present ,.-

framework. (Of course, very few artificial intelligence programs have addressed these latter

problems.) Unless consumable resources are employed, time is not represented explicitly, since

the ordering links in the procedural network provide the necessary temporal information.

laving discrete operators and actions means that the effects of an action occur instan-

taneously as far as the system is concerned. This applies to a given abstraction level; using
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hierarchical planning, the system can order the effects that occur at a lower level of detail.

While the deductive causal theory could deduce effects that depend on time, the system is

not suitable for highly dynamic worlds. It is also not designed to monitor the world as it is

planning, and therefore cannot react immediately to a changing environment.

Proposals for reasoning about the beliefs and knowledge of other agents generally specify

more sophisticated logics, particularly modal logics [10]. These capabilities cannot be rep-

resented in SIPE, because it uses a restricted form of standard first-order logic to represent

dynamic relationships. Many other logics (e.g., temporal and dynamic logics) have also been

proposed for planning, and they often provide more expressive power than is found in classi-

cal planners. However, they suffer from inherent computational difficulties, the need to write

many axioms with all the details right, and possibly other problems such as unintended mod-

els [11] (in nonmonotonic systems) or the need to compute all possible effects an action might

have. With an expressive logic there is generally a need to specify axioms to deduce that

all things not mentioned have stayed the same (unless the STRIPS assumption or something

similar is employed).

Another major limitation of classical planners is that they assume complete and correct

knowledge of the world. This is, of course, unrealistic in the real world, although there are

certainly useful problems to be solved in domains where the state of the world is known. SIPE
'6

alleviates this problem somewhat by allowing predicates to be specified as unknown, but the

system does no sophisticated reasoning about uncertainty. This limitation is also extended

into the execution monitoring and replanning modules, which assume correct information

about unexpected events. The limitation avoids many difficult problems, the most important

of which is generating the high-level predicates used by SIPE from information provided by

the sensors. fhis appears to be the most critical issue in enabling a high-level )lanner such

as SIPE to control a mobile robot.

Although many of the limitations described above are quite severe, there are nevertheless

useful problems that can be addressed within these limitations. Examples include the plan-

ning of tasks for an indoor mobile robot, planning a travel itinerary, and producing a process

routing for a manufacturing facility. In return for accepting these limitations, we get an.

efficient system than can solve these problems (which would otherwise involve conmbiatorial

explosions) in reasonable amounts of time.

14
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Chapter 3

SIPE and its Representations

As we have seen, SIPE accepts the classical definition of the planning problem and takes as

input a description of the initial state, a description of a set of actions, a goal descriptor, and 0

set of sentences describing the domain. We use the term operator to refer to the system's

representation of actions or abstractions of actions that may be performed in the domain.

To meet its goals of efficiency, SIPE uses both a frame-based representation and first-order

logic to describe the domain. In addition, an operator description language is provided for

describing operators in such a way that SIPE's truth criterion (see Chapter 5) can be used on

all plans produced from these operators. The operator description language was designed to

be easy to understand (to enable graceful interaction) while being more powerful than those

found in previous domain-independent planners. Furthermore, rules in the deductive causal

theory (see Chapter 6) can also be expressed in the language.

Figure 3-1 shows how all these different aspects of the system fit together. It dep icts a

conceptual division of the planning system into different modules, primarily for expository

purposes - there is not always a sharp demarcation in the actual code that separates these

modules. The remainder of this report will describe each of these modules.

The flow of control depicted in the figure indicates how the modules interact with each.

other in the planning system as a whole. The search algorithm controls the planner, awl •

constructs plans by using the interpreter to apply operators to expand existing plans. In this

chapter, we describe the operator description language, plans, and the basic representations V

they depend on. To expedite graceful interaction, plans in SIPE are represented as proce(lural 4
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Figure 3.1: SIPE Modules and Flow of Control .
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networks [27], with temporal information encoded in the predecessor and successor links

between nodes. The description of operators avoids many problems suffered by previous

domain-independent planning systems; because we use a deductive causal theory. most effects

of actions can be deduced in a context-dependent nanner so that they do not need to be

specified in the operators.

The truth criterion determines whether a formula is true at a l)articular point in time. All

modules of the system depend upon it, and the system's compiutatio'al efficiency depends

directly on the efficiency of the truth criterion. Chapter 5, the most technical in this report,

describes it in detail, explaining the heuristics that avoid solition of an NP-complete prob-

lem. Many design decisions in other modules were chosen to take advantage of the efficient

truth criterion. The truth criterion relies on the unification procedure: SIPE is a constraint-

posting planner. so unification involves reasoning about constraints and deciding how munch

of the global constraint network to analyze. Chapter 4 describes SllPE's constraints an(l the

uinification procedure.

The search algorithm must balance the use of resource reasoning and use of plan critics

with the ap)lication of operators. If the global constraint network is checked too fre(uent ly.

the planning will be unnecessarily slow. If it is not checked frequently enough, the system

may spend its computational resources developing plans that will later be found to contain

inconsistent constraints. SIPE's search algorithm (described in Chapter 8) makes certain

tradeoffs on these issues, but allows interactive control by the user for added flexibility. Th(

search algorithm must also be concerned with the relationship between different levels of

abstraction in the plan. Much of the system's power comes from using these levels, and the

issues involved are discussed in their own chapter on hierarchical planining.

The plan critics are responsible for finding problems in the plans produced and correcting

them. lPrimarily, this involves checking whether the global constraint network is satisfiable,

finding resources conflicts, checking with goals are already true, and finding problematic

interactions between parallel actions. Most of the critics are described in Chapter 9, but the

ones that (1o resource reasoning are especially important because of their innovations and are

discusse(d separately in Chapter 10. The critics make use of the replantning actions tlhat are

part of tlit execition monitor. By so doing they modify plans, sometimen s removitig sumbpla ns

in or(lr to make a more optimal plan. This represents a significant advance over previous

cliassical planners.
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WVhen planning is finished, the search a lg ri thm n rel inrquiishies cont rol to the execuition

mionitor. This modurle (described in Chapter I1 ) accepts (lescriltioiis of arbitrarY uiniexpect ed

occurrences. It then determines how these occrrenices affect t lie plait being executed, possiblY

nmodi fyinrg the plan by removing certai ii subil rs al ridn jsert ing certai ii goals. Whl thle

resulting plant contains unsolvedl goals, the execuiorn ion itor agalin c~alls thle search algoritIi in

to expand this plan. Both thle plan critics atl (It lie,('Xecriltion ni1olli tor rise tilie rep~lanin iiig

actions to alter existing plaits. The execuit ion mi tlo r mia kes rise of th lanI~l rar Ional that

SIPE has encoded in the plan. (The ratijontale for arn action iii a plali Is -wliY" the actilon is

iii the plan.) This is needed for deteriniiri how long a coniition mu rst be miainitained , what

chfanges in the world cause problems in the plani, andI what thle relationtshiip is aniong act ions

at different levels of abstraction. The relplaii er carl then use the rationale to dlecidle what

suhplans to remove or modify when ulnexp~ectedl events have occurred. The current chapter

explains how operators provide tie information nteedhed by the p~lan rationale.

Tlhe parser and disp~lay routines will riot be descrihed else'vhere in this report. The parser

roadls in thle perspicuous forruahlisiri accep~tedl by, SIPE I aiid produrces the internal st ructurires

tile planiner uses. All operators aiid deductive rrihes p~resenited in this report are giveii in the

synttax accep~tedl by the parser. An initial (description of a dlomain includes specification of

he sort, hierarchy dlescrib~ing the objects iii thle world, p~redicates stating what is trure in tie-

world. operators stating which actions may he taken, operators dlescrib~ing (deductive rules,

Ili(l procedural networks for the problenis to he solved. The last th ree are all described uisinrg

tie operator dlescription language dlescri bedl below.

3.1 Representation of Domain Objects and Relationships

D~omain objects arid their i nvarianit properties amre rep~resenited by nodes linked in a, hierarchy.

This perinits SIPE to incorporate the adlvanltages of frainie-based systemis (primarily effi-

cieiic). while retaining the power of the p~redlicate calcuilus for representing properties that

(1o varY. Inva ri ant, properties (10 not change ats act ions plan nedh by t ie systemi are performed

(e.g.. thle size of a truck (does not change when it Is dIriven). Eachi node c-an have at tribuites

associat ed with it and call inherit properties from ot her nodes in thle hierarchy. The ,,aluies of

at tri butes may be nunibers, pointers to other nodes, key words t hat thle sYstemi recognizes,

or anY arbitrary st ring ( which canl be rused only bY chieckinrg whet her it is equal to aniot her

e or J.% % 4j



such string). Planning variables contain constraints on the values of attributes of possille

instantiations.

A restricted form of first--order predlicate calculus is used to represent properlies of dor aii i

objects and the relationships among them that may change with the performarce of acIi, (o'.

This calculus is also uised to represent invariant relationships ii the donraiii, alt lIotlph rl a-

tionships that cart be relpresernted ;is unary or binary predicates would normally bo placd

in the sort hirarchv. 1:, dical e names can be specified as invariant, in which case 1hlw sv.

tern avoids the irieficiency of applying the truth criterion to them. This saie calcu]l is.

of course, used to describe goals, preconditions, and effects in the operator lescri)tiort I ,ii -

guage. Quantifiers are allowed whenever they can be handled efficiently certail uri''vrsa I

quantifiers are permitted in effects (but not preconditions), and certain existential luaitifiers

can occur in the preconditions (but not effects). Disjunction is also not allowed in effcts.

These restrictions result froni the way the truth criterion solves the frame problem.

3.2 Operator Description Language

Ihe operator descriltion language was designed to provide an easily understandable way to

specify operators. Operators represent the actions, at different levels of abstraction. that th'

system mnay perforrm in the given domain. The primary representational task of art operator i

to describe how the world changes after the action it represents is executedl. A briefsr rmary

of our solution to the frame lroblem (presented in detail in Chapter 5) should be enotigh

to understand the representation of operators. SIPE makes the assuiption that the world

stays the same except for the effects explicitly listed with each action. However, the systeri

deduces many of these effects from the deductive causal theory of the domain. So operators

must explicitly list only effects that are required to trigger all the necessary deduced effects.

thus relieving the operators of much of their represeitational burden. The effects explicitly

listed in the operator must, of course, occur in every situation in which the operator riiglit

be applied, while the deduced effects may be conditional on the situation.

In addition to effects, operators contain information about the objects that participat ('

the actions, the constraints that must be placed on them, what the actions are attemltim, rgo

achieve. how actions in this operator relate to more or less abstract descriptions of the same

action, and the conditions necessary before the a, tions can be p~erformed (their precomidit io s).
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Operator: Fetch

Arguments: robot 1 ,object 1 ,roon I ;

Purpose: (Holding robot I object 1);

Precondition: (Inroom object 1 room i);

Plot:

Goal: (Inroom robot I room 1);

Protect-until: ( holding robot I object I);

Goal: (Nextto robot 1 object 1);

Process

Action: Pickup;

Arguments: robot 1, object 1;

Effects: (Holding robot I object 1);
End Plot End Operator

Figure 3.2: SIPE Robot World Operator

It addiltion, tlie plaiiner niust encode the rationale behind the plain so t hat the replanner

can inake inforiied decisions about plan modification. Much of the knowledge about, plan

rationale is provided in the operators. Many features combine to make S1IE's operator

description language an improvement over operator descriptions in previous systems. These

features will be presented by discussing the sample operator given iil Figure 3-2. The Fetch

operator comes from a fairly high abstraction level in the mobile robot doniain and describes
the fetching of an object from another room.

The puipos( of ai operator deterinines which goals the operator cat solve (as well as in the

plan rationale), and its precondition dictates in which situations th, operator can be applied.

Applying an operator involves interpreting its plot as a subplau for achieving a goal. The

(Lrgnh( nt.s of an operalor are temiplates for creating planning variables anod adding constraints

to them. The operator's preconditions and purpose are both encoded as first-order predicates

on the arguments of the operator, which can be variables or objects in the doiain. Each of

these will be discussed below using the Fetch operator as an exaiiple. Other l)roperties of

operators are used by deductive rules, but these will be described later.
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3.2.1 Arguments

In the Fetch operator, robotl, objectl. and room i are variables that are constrained (by

virtue of their names) to be in the classes robots, objects, and rooms respectfully. Besides

this automatic posting of class constraints, the listing of arguments in an operator can convey

considerable additional information about resources and constraints. Arguments can be spec-

ified as resources, in which case the system treats them as reusable resources (as described

in the chapter on resources). Constraints will also be described in their own chapter, but the

following syntax, which SIPE accepts, gives an indication of the variety of phrases that can"

occur after a variable in the arguments slot:

CLASS EXISTENTIAL

CLASS UNIVERSAL

CLASS <any defined class> 
K

OF TYPE <any defined class>

IS NOT <any defined instance>

IS NOT OF TYPE <any defined class>

WITH <any attribute name> <any attribute value>

WITH <any attribute name> GREATER THAN <any numerical value>

WITH <any attribute name> LESS THAN <any numerical value>

SAME AS <any previous variable>

IS <numerical function specification>

IS <numerical range>

IS <number> 
a..

IS CURRENT VALUE OF <continuous numerical variable> S

IS PREVIOUS VALUE OF <continuous numerical variable>

The ability to post and use constraints like the ones above is a powerful tool that was not -

present in previous domain-independent planners.

3.2.2 Preconditions
",.

An operator's precondition must be true in the world state before the operator can be applied.

In the Fetch operator, the precondition is used to instantiate rooml to the room which

currently contains objectl. The concept of precondition here differs from its counterpart in

some planners, since the system will make no effort to make the precondition true - a false

precondition simply means that the operator is inappropriate. (Conditions that the planner leg.
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should make true (which may be referred( to as prcconditions in other planners) are (x prsw(ld

as goals in the plot of the operator. laving both subgoals anil preconditiois tha t are lb t

achieved as subgoals giv(s SIPIEF the flexibility to encode inetaknowledge on how to ahiev,

goals (i.e., do not try to aclhieve preconditions). This encoding of nietaknowledge is [ii'r hert ,

enhanced by the use of choi,'eJrrcss and procss no(des as well as goal nodes in the )lot s of

operators. While goal nodes i plicitly state that any possible operator should be used tob

achieve the goal, choiceprocess iiodes s)ecify which set of operators should be used ti ;chiieve

the goal, and p r o cess nodes spvcify one )articular action that must, be usedl (and I herefore

do not produce backtrackinrg pointts).

Preconditions in SIIPE are usefil for a number of reasons. First, it is plausible that soi' 0

domains may have actions that will work in certain (possibly undesirable) situations, but that

one would not want to work to ;achieve such a situation for the sake of performing that action.

SIPE can easily represent this, whereas a planner that tried to achieve all preconditiols might,

try to make the situation worse in order to apply its "emergency" operators. Second, SIllE's 0

)reconditions are useful for con necting (lifferent levels of abstraction. The preconlition of an •

operator might specify that certain higher-level conditions must be true, while the operator

itself specifies goals at a more detailed level. This provides an interface between two dlifferent

levels of abstraction that was not present in NOAll. Third, preconlitions are inclu(he(l in

the plans produced because they represent part of the plan rationale (see below) and play a

crucial role in the replanier.

3.2.3 Plots

The plot of an operator provides step-by-step instructions for performing the action rprep

sented by the operator. When expanding a )lan to a lower level of (letail. SIlF uses I lhe plot

as a template for generating nodes to insert in the plan. (Several types of nodes not ien-,

tioned in the plot are also generated; for example, nodes denoting preconditions.) Because

of this isomorphism with plans, plots are also represented as nodes in procedural networks.

The plot may be at the same level of abst raction as the purpose of the ol)erator (e.g., in the

standard block world the level of description never changes), or it may use a more detailed,

level of abstraction.

To provide for encoding merak nowle(lge of how to achieve goals, the plot of au oper1 t-or
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can be described in terms of goal nodes which require a certain predicate to be achieved,

choiccprocess nodes which require that one of a certain set of operators be applied to solve

a certain predicate, and process nodes which require a specific oerator or primitive action ,

to be applied. These convert directly into plan nodes of the samie type when an operator is

a)plied. Unlike process nodes, the other two types may be turned into phaonoin nodes inside 5.,

a plan if their goal predicate is already true in the world state \vithouil taking any action.

Using a process node in the plot emphasizes the actual action being performed, wbile using

a goal node stresses the situation to be achieved.

During planning, an operator is used to expand an already existiig goal, chioicoprocess,

or process node in the plan to produce a more detailed plan at the next laning level. For .

example, if the plan contains the goal of having the robot hol all object, then the Fetch

operator may be applied, and it would generate two goal nodes (one for getting into tile same

room as the object, and one for getting next to the object) and a process no(l (for picking up

the object) at the next planning level. It would also generate a choiceiode a nd precondiiol

node in the plan that are important to search control and replanning respectively. The choice

node denotes that there are other choices for achieving the holding goal, and becomes part of,%

the context that allows constraints posted on variables as a result of this operator application

to only be considered when this choice is part of the current context. The precondition

node helps encode the plan rationale to guide the replanner. It, records the fact that the

precondition of the Fetch operator was expected to be true at a particular point in the plan.

Many previous domain-independent planners required "add" and "delete" lists to be pro-

vided in operators. In SIPE, this is not necessary because the deduct ive causal theory deduces

most of the effects of the nodes in a plan. For example, Figure 3-3 shows the 1)utou operator

from the standard block world. Note that nothing is said in tlie effects of any plot node

about when a block is clear or not clear, or when a block is not oii another block. The 0

causal theory for the blocks world deduces all these effects as appropriate to the situation,

and handles a richer block world than does NOAH (e.g., several small blocks cali be on top

of a big block, requiring the moving of several blocks in order to clear the big block.) While

adding significantly to the computational complexity, deduced effects make the description of ,-

operators much simpler and permit them to be applied in a much wider range of situations,

since the deduced effects can be conditional. This also makes operators easier to add, modify,

and debug. There is a cost involved in addition to the computational conl)lexity namely.,
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the user must provide a correct causal theory and (ebug it. Th, rianner in which effects are

deduced is one of the major contril)utions made by SIPE. Chapter 6 discusses how tile causal

theory is expressed, how the deductions are controlled, how the systen integrates lhe causal

theory, and the importance of deduced effects to overall system performan ce.

SIPE distinguishes between main effects and side effects of an action. This distinction is

of primary importance in both the handling of parallel interactions ad(J the nonlinear trit Ii

criterion, both of which will be discussed in later chapters. All effects that are deduced are
considered to be side effects. Efifects that are provided by the goals of the problem or aire .

introduced directly by operator applications are considered to be main effects. Flexibility is

achieved by allowing plot nodes in operators to specify side effects as well as effects (which

are assumed to be main effects). If an operator specifies some predi(cate as a [maui] effect, l.vh,

deductive causal theory will not deduce it as a side effect. Thus, the writer of I he operators

has complete control over what which effects will be main effects and which side effects. In

practice, the default of using all deduce(l eff'e<cts as side effects and all listed effects as main .*-l

effects has proven satisfactory in all domains encoded in SIPE.

3.3 Plan Rationale

The plan rationale describes "why" the plan is the way it is, so that the replanner can modify

it appropriately. While SIPE provides more flexibility in specifying the rationale behind a

plan than many domain-independent planners, it does not improve on NONLIN and 0-PLAN

[321 in this regard. The primary tasks of the plan rationale in SIPE are to encode why nodes

are in tile plan, how to group nodes together into subplans that accomplish a goal, how %

long the truth of a particular goal must be maintained, and how different abstraction levels

connect. These tasks are performed by precondition nodes, protect-until links, and purposes. 0

Precondition nodes help solve the first two tasks. They encode the assumptions imade

by the planner when inserting a subplan into the plan. Furthermore, they call be used to

precisely access this subplan from any point in the plan. Because precondition nodes are

copied down to other planning levels, one can follow the ancestor links (described later)

to the point where the precondition node was first introduced and use descendant links to

determine the subplan formed by the application of the operator containing the precondition.

Since preconditions are not achieved as subgoals, they are not reachieved by the relihanner

2.1
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0

0

Operator: Puton

Arguments: blockl, objectl Is Not blockl;

Purpose: (On blockl objectl);

Plot:

Parallel

Branch 1:
Goals: (Clear object 1);

Branch 2:

Goals: (Clear blockl);
End Parallel

Process

Action: Puton.Primitive;

Arguments: blockl,objectl;

Resources: block 1;
Effects: (On blockl objectl);

End Plot End Operator

Figure 3.3: SIPE Block World Operator •

%
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when they become unexpectedly false. Such a false precondition merely means that the

subplan determined by this precondition is invalid and should be removed.

When a node is planned to a greater level of detail by applying an operator, the expansion

may consist of many nodes. It is important to ascertain when the effects of the higher-level

node become true in the more detailed expansion. SIPE uses the l)urpose attribute of an

operator to determine this. The higher-level effects are copied to whichever node in the

expansion achieves the purpose of the operator, and the rationale for that node 1being in the

plan is that it achieves the higher-level goal. It therefore inherits the protect-until attribute

of the higher-level node, recording the fact that its effects must be maintained until the time

specified in the higher-level node. A protect-until slot can have the atom PURPOSE as its

value, denoting that the given node is the main purpose of the plan, not preparation for

some later action. If the operator does not have a purpose attribute, or it is not listed as

an effect explicitly in any node of the expansion (this will often happen when the purpose is

at a higher level of abstraction than the plot), then the default is to copy the effects down

to the last node of the expansion. In NOAH the assumption was that the last node of an

expansion achieved the main purpose, so the effects were always copied down to that node.

SIPE therefore provides additional flexibility -- for example, operators that include some

"clean-up" or normalization after accomplishing their goal can be represented correctly.

SIPE also keeps track of the rationale for each node that is not required for achieving

some higher-level goal. Such a node is put in a plan for the purpose of preparing some later

action at that level, and this intent must be recorded so the planner can maintain the effects

of the node until its purpose is achieved. Nodes within the plot of an operator may specify

protect-until attributes that indicate that their main effects should be maintained until the

protect-until condition is achieved. If no protect-until is specified, the default is that the

effects are protected until the action which achieves the higher-level purpose of the operator.
J

Another reasonable default would be to protect the effects only until the next action. Since

the system provides flexibility in this specification, the default can be tailored to each domain.

In the Fetch operator, the goal of having the robot in rooml should be maintained until the

robot is holding the object, it is trying to fetch. If the default were to maintain an effect

only until the next action, then it would be necessary to include the protect-until shown in

Figure 3-2. Without it, the replanner would think that nothing was wrong if the robot left

the room after getting next to the object but before picking it up. SIPlF's ability to represent

W
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protect-until attributes explicitly provides flexibility, and represents an advance over NOAH.

HACKER [30] and many systems based on logic are completely flexible in this manner.

3.4 Plans

Plans are specified in SIPE by giving a pointer to the planhead node at the beginning of

the procedural network and a context. The network contains choice points from which alter-

native plans branch, and the context indicates which branches should be taken in perusing

the specified plan. Let us summarize the types of nodes and links that can appear in the

procedural networks that represent plans in SIPE. Planhead nodes mark the beginning of 0

each plan, and contain in their list of effects the description of the initial state of the world.

Links are important for encoding temporal information which is encoded in the predecessor

and successor links between nodes, and by the use of split and join nodes.

Split and join nodes allow unordered, possibly parallel, actions. Split nodes have mul-

tiple successors, and join nodes have multiple predecessors, so that nonlinear plans can be

produced. In fact, join nodes also have multiple successors, though the context selects only

one of them to be in the current plan. The other successors represent the remainder of the

plan after alternative operator expansions have been applied within the split-join pair.

SIPE assumes that whenever a split-join pair is introduced, whether by application of an

operator or in the original goals, the main effects of the last node in each parallel branch %

are intended to be true at the point in time represented by the join node. This is enforced

by placing a parallel-postcondition slot on each such join node which specifies the predicates

that must all be true in the situation represented by the join node. This is done only when "."."

the join node is first introduced into the plan; it is not updated as more detailed levels of

the hierarchical plan are expanded. As long as the highest level predicates are as desired,

it is assumed that the lower-level predicates are irrelevant. If a join node originally has N

predecessor branches, there will be N conjunctions of formulas that must all be true at the

join node. (After planning, some branches may have been linearized, so there may be fewer -

than N predecessors.) An alternative way to encode this information is to have preceding

nodes specify protect-until links that point to the join node. Parallel postconditions are

preferred since they collect all this information at the join node itself, making it easier to

reason about and reachieve these conditions during execution monitoring.
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An example of the use of parallel postconditions is the standard block-world problem that

has parallel goals of getting A on B and B on C. The join node at the end of these parallel

goals has a parallel postcondition which requires both of these goals to be true at that point

in time. Suppose the planner decides early in the planning process to linearize the parallel

branches in order to get B on C before it attempts to get A on B, and then undoes the B-o(-C

property of the state while getting A on B. The parallel postcondition enables the planner

to see that the plan so produced is invalid, since both of the goals are not true at the end of

the plan.

SIPE implements conditional plans by providing cond, endcond, and condpatterni nodes.

The first two are similar to split and join nodes in their use of multiple predecessors and suc-

cessors, but each successor of the cond node begins with a condpattern node that determines

which successor will be executed. The first successor of a cond node whose condpattern node

has a goal that is currently true will be executed. When branches are joined by an endcond

node, the system assumes that the world is generally the same no matter which branch is

taken. If this is not true, the user should not use the cond-endcond construct, but rather

should produce alternate plans for each of the different worlds. To be more exact, "generally

the same" means that if something is made true on any one branch of the cond-endcond,

then the system will assume it is true after the endcond node. Thus, for the system to be

consistent about the world after the endcond node, the branches in the cond-endcond must

not change any aspects of the world upon which the remainder of the plan depends.

The system automatically inserts choice nodes in the plan to denote branching points in

the search space. They have multiple successors, but the context selects one of these as being

in the current plan. A choice node and one of its successors is referred to as a choice point.

A context is a list of choice points, and uniquely determines a plan. Constraints on variables

are posted relative to choice points. Thus, if the part of a plan after a choice node is removed,

the corresponding choice point in the context should also be removed so that constraints that

are no longer valid will be ignored. As we shall see, this capability is of critical importance

in the replanner.

Goal nodes do not occur in final plans, since they represent problems that have not yet

been solved. A goal node specifies a predicate that must be achieved, but which is not true
We

in the situation represented by its location in the plan. Each goal node has a protect-until

slot, which denotes that the goal must be maintained as true until the goal/node which is its
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protect-until is achieved/executed.

Phantom nodes are similar to goal nodes except that they are already true in the situation

represented by their location in the procedural network. They are part of the plan because

their truth must be monitored as the plan is being executed, and they may again becomne

goal nodes.

Process and choiceprocess nodes represent actions to be performed during execution of S

the plan; they also have protect-until slots, as do phantom and goal nodes. Inl a final plan,

all process nodes will denote primitive actions. As noted earlier, choiceprocess nodes specify

which set of operators should be used to achieve the goal, and process nodes specify one

particular action that must be used (and therefore do not produce a backtracking choice).

Goal nodes implicitly state that any possible operator should be used to achieve the goal.

Precondition nodes provide a list of predicates that must he true in the situation repre-

sented by their location in the procedural network, as discussed earlier. They nean, in effect .

that the part of the plan associated with them (see below) was prodluced] on the assumption

that the predicates in the precondition were true.

In addition to the horizontal protect-until, predecessor, and successor links within one level

of a plan, there are vertical links between different levels of the hierarchy. Each node that is 0

expanded by the application of an operator has descendant links to each node so produced.

The descendant nodes in turn have ancestor links back to the original node one level higher in

the hierarchy. Starting with a node that was expanded by an operator application, a wedge of

the plan is determined by following all its descendant links (in the current context) repeatedly

(i.e., including descendants of descendants, and so on) to the lowest level. (This definition

of wedges is the same as that used by Sacerdoti [27].) Figure 3-4 depicts this graphically, NI

with the large boxes in Part (b) representing wedges. The node originally expanded by an

operator application is called the top of the wedge. A wedge with its top at a high level in - "

the hierarchy will generally contain many lower-level wedges within itself. Only goal, process,

and choiceprocess nodes can be the tops of wedges.

Note that precondition nodes can be used to delineate the subplan produced as a result of

any one operator application at any hierarchical level in the plan. Since precondition nodes

are created when an operator is applied and then copied down to lower planning levels, the

part, of a plan associated with them can be found by ascending along the ancestor links to the
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Figuire 3.4: SIPE Plazi Viewed] from IDifferent Perspectives
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point at which the preconditbion first became part of the plan. Thle node thtwas epne

by an operator to create this precondition is one level higher than where the preconiditioni

node first appears and is the top of the wedge associated the operator application.
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Chapter 4

Constraints

One of SIPE's most important advances over previous doiaain-indepeudent planning systems

is its ability to construct partial descriptions of unspecified objects lhrough the use of con-

IIstraints. This ability is important b)oth for domain represent at ion anid for finidinug solutions

efficiently (since decisions can be delayed until partial descriptions provide, more information).

While constraints have been used in domain-specific planning systelms [29], the constraints

themselves have been domain-specific, making them less useful for solving different problems.

SIPE is the first domain-independent planner to use domain-indepmdent constraints.

Planning variables that do not yet hace an imstantiation can be partially described by set-

ting constraints on the possible values ani instantlation mighlt take. This allows instantiation

of the variable to be delayed until it is forced or until as much information as possible has

been accumulated, thus preventing incorrect choices from being made. Constraints may place

restrictions on the properties of an object (e.g.. requiring certain attribute values for it in

the sort hierarchy), and may also require that certain relationships exist between an object

and other objects (e.g., predicates that must be satisfied in a certain world state). SIPF

provides a general language for expressing these const raints on variable bindings so they can

b encoded as part of the operator. During planning. the system also generates constraints

that, are based on interactions within a plan, propagates them to variables in related parts of

the plan, and finds variable bindings that satisfy all constraints.

Constraints let both operators and plans be expressed more concisely and clearly. SIPE

can declare a variable as CARGOPLANE1 WITH RANGE 3000 which concisely represents the re-
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quirements on the variable representing an airplane without adding any complexity to the 

plan. NOAH, for example, would have to represent every p)roperty of an object as a predicate

and then achieve these predicates as goals during planning. In addition, constraints help the

system represent plans that could not be expressed at all in previous systems. For exali-

ple, the optional-same and optional-not-saine constraints (described below) used in resource

reasoning cannot be expressed as goals or )reconditions in a systei like NOA If.

Constraints also improve efficiency. Having a partial description of a planning variablo ,

allows large parts of the search space to be pruned, since only preconditions that are consistent"

with the partial description will be true. The constraint satisfaction algorithn also taks

advantage of the sort hierarchy representation. For example, SIPE finds a cargoplane with •

the proper range in a single efficient lookup in the sort hierarchy. In NOAH, a cargoplal-e

.Vould be chosen without regard to its range, even though the range goal may later fail. If

NOAH were to backtrack (in actuality it would fail), it would still have to search the whole

space in the worst case.

4.1 SIPE's Constraint Language

Since no previous domain-independent planning systems have use(l constraints to partially ...

describe objects, the constraints in SIPE will be documented in some detail. Their coin-

putational complexity will be mentioned in the following section and described in detail in ..'

later chapters. The system has two distinguished classes for variables representing minumerica! •

quantities. num(erical and continuous. They are used below and described in (Chapter 10.

The allowable constraints in SIPE on a variable V are listed below:

e Class This constrains V to be in a specific class in the sort hierarchy. In SIPE's 0

operator description language, class constraints are generated implicitly based on the"

variable name. As we will see in the discussion of (eductive causal theories, it can also

te useful to provide explicit class constraints, e.g., OBJECTi OF TYPE BLOCKS.

Not-Class V must be instantiated so that it is not a member of a given class. [or

example, an operator could declare that an airplane be any airplane except a memlber of

the class cargoplane with the following phrase: PLANE1 IS NOT OF TYPE CARGOPLANE. .

:"1Z
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e Pred - V must be instantiated so that a given predicate (in which V is an arguninet of

the predicate) is true. This results in an explicit number of choices for V's instantiat ion,

since all true facts are known (by the closed-world assumption). Pred constraints are

generated automatically by the system during the planning process. They are the 1iiost

frequently occurring constraint, and efficiently computing them is of central import ance

(see Chapter 5).

e Not-Pred -- V must be instantiated so that a given predicate (in which V is an ;argi-

ment of the predicate) is not true. These are also generated by the system. Atholigh

not as ubiquitous as pred constraints, they are important.

* Same - V must be instantiated to the same object to which some other given variable

is instantiated. This encodes a codesignation constraint between two variables, and is

often generated automatically by the system.

o Not-Same --- V must not be instantiated to the same object to which some ol her given

variable is instantiated. In the block world Puton operator of Figuire 3-3, the iphrase IS

NOT BLOCK1 results in a not-same constraint being posted on both blockl and object I

that requires they not be instantiated to the same objects. Thus, if SI'E is looking

for a place to put block A, it will not choose A as the place to pit it (something that

NOAtl could have done in the block world, it seems).

e Instan - V must be instantiated to a given object. This could be represente(l y usib%

a same constraint applied to objects as well as variables, but inslant iation is a basic

function of the system and warrants its own constraint for a slight gaiii in c triv arid

efficiency. These are generated automatically by the systein as it filk o it Ihe plaii.

e Not-Instan - V must not be instantiated to a given object. ('otstraiiit of t hii. tI'

can be generated by the system or provided as part of tle domniaini (escrilpiot. For

example, an operator can specify a variable to be any block except :A by usirig the

following phrase: BLOCK1 IS NOT A.

* Optional-Same Tiis is similar to the same coi.trairt, lul rivrelv s)ecifies a pref-

erence and is not )inding. For example, otit wmld prefer to conserve resources iy

making two variables be tihe saire object, bit, if this is n(1 possibhe, thi differeni

3.'
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objects are acceptable. These constraints are generated by the system as part of its V*b

resource reasoning.

" Optional-Not-Same - This is similar to not-same, but is not binding. If SIPE notices

that a conflict will occur between two parallel actions if two variables are instantiated to

the same object, then it will post an optional-not-same constraint on both variables. If p'.

it is possible to instantiate them differently, a conflict is avoided. If it is not, they may

be made the same - but the system will have to resolve the ensuing conflict (perhaps .pp

by not doing things in parallel).

" Any attribute name - This requires a specific value for a specific attribute of an

object. BLOCK1 WITH COLOR GREEN would constrain the variable to match only green

blocks. Numeric values can also be compared with greater than and less than. In

planning an airline schedule, for example, the operator used for cross-country flights

might contain the following variable declaration: PLANE1 WITH RANGE GREATER THAN

3000. This would have created a constraint on planel requiring the range attribute (in "a.

the sort hierarchy) of any possible instantiation to have a value greater than 3000. ",

" Current Value - A numerical variable can be constrained to be the current value of
a continuous variable at some point in the plan. This permits operators to reason about

and place constraints on the value that some continuous variable has at some particular

point in time. The syntax for specifying this in a SIPE operator is NUMERICAL1 IS

CURRENT VALUE OF CONTINUOUSI. S

* Previous Value - This is the same as current-value except that the value is taken

just before the current node instead of just after it. The syntax is NUMERICAL1 IS

PREVIOUS VALUE OF CONTINUOUS1. a

* Range - A variable can be constrained to lie within a certain range e.g., NUMERICAL1 °.\

IS [5,20].

* Function - A variable can be constrained to be the value of a certain function applied

to any number of arguments. The function should return a numerical value when called

with fully instantiated arguments. If some of the arguments are not instantiated, SIPE

will compute a range from the function constraint by calling the function on all the 't, *?

possible instantiations. The ability to specify functions is of general utility. S
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Summary Range Since computing numerical constraints can be expensive, it was

necessary to address the )roblem of choosing between storage and recomputation. Our

solution is to store the results of computing a numerical variable's constraints l)y placing

a summary-range constraint oil the variable. (This cannot be done for continuous

variables because their values vary with time.) These constraints are not posted by

users, but only by the system, and are used during matching so that function, range,

previous value, and current value constraints can be ignored. Summary ranges are

recomputed at appropriate intervals.

4.2 Using Constraints

Much of SIPE's expressive power and efficiency is rooted in the ability to reason about con-

straints. Constraints add considerably to the complexity of the planner because they interact

with all parts of the system. The most basic operation of the planner is the application (f o

the truth criterion, the most basic operation of which is unifying two variables, which in turn

involves determining whether the constraints on the variables are compatible. In a similar

way, constraints also interact with the deductive causal theory. Constraints also affect plan

critics, since determining if two concurrent actions interact may depend on whether their

constraints are compatible. SIP nI must also solve a general constraint-satisfaction l)roblem

with reasonable efficiency, although how to control the amount of processing spent oil (coil-

straint satisfaction is an open and important question. SIPE currently uses a simple al(l

straightforward constrailt-satisfaction algorithm that is modular and replaceable.

Currently, SIPE runs the global constraint-satisfaction routine only once per plannin -g"

level in the hierarchy. This call be easily changed in domains where better p~erformance might

be achieved by investing this effort iniore or less often, and can also be invoked interactively )y 

the user. While planning within a planning level, the system makes localized computations

to assure that constraints are likely to be satisfiable. It is an open question how "local" to

keep these computations. ('flecking the complete global constraint ietwork on each variable

match is prohibitively expensive, so SIPE employs an algorithm to localize this computation

while keeping it broad enough to rarely, if ever, permit a variable to malch when it should

not. In the domains implemented so far, there has been no problem with invalid matches. .

This algorithm and the tradeoffs involved are discussed below.
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The system immediately propagates consequences of a new constraint as soon as it is

posted. The small cost of so doing is more than offset by the immediate discovery of un-

satisfiable constraints, which prunes the search space. When same and not-same constraints

are added to a variable, similar constraints are immediately propagated to all other variables

involved. (This may result in forced instantiations.) Whenever a nonmumierical constraint

other than these two is added to a variable, the system verifies that at least, one object

satisfies all the constraints on this variable. This is efficient because pred constraints store

explicit disjunctive lists of possible instantiations. If only one possible instantiation remains

for a variable, that instantiation is made immediately; if no instantiations remain, the current

search branch fails immediately. S

The addition of numerical constraints is handled slightly differently. The consequences

of these constraints are summarized in the summary-range constraint, which must be ap-

propriately recomputed as planning progresses and more constraints are added and more

instantiations made. The addition of numerical constraints triggers a recomputation of the ;

suimary-range constraints of the variables, as described in Chapter 10. After instantiating 0

variables, the recomputation problem is harder. The system keeps track of variables upon

which a summary range depends and recomputes the range when any of these variables are

instantiated.

Pred and not-pred constraints are posted by the system to ensure that preconditions of

domain rules will be true. They are of central importance in the planning process, and con-

strain the instantiation of many different variables, thus requiring the previously mentioned _2-
localization of computation during variable matching. By accumulating them, the system is

assured that any object satisfying all the constraints on a variable will have all the properties

required by the plan. In Chapman's terminology, a pred constraint describes all the possible
establishers and white knights of a predicate (see Chapter 5). A pred constraint specifies a set 5

in which each element is a list of possible codesignations for variables that will assure that
r2-

the predicate is made true. For example, to ensure that P(x y z) holds, a pred constraint -.

will be posted on each of the three variables. In general, the constraint specifies a set with

elements (xi yi zl) through (x, y,, zn). To satisfy the constraint, there must be some i such

that the three variables (x y z) can codesignate with (xi yi zi), respectively. (Two variables

can codesignate if they unify, i.e., if it is consistent to assume they have the same instantia-

tion.) Similarly a not-pred constraint specifies a conjunctive set where each element is a list
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of possible codesignations for variables which must not. all be pres,,nt or the predicate will be

made false.

It is fairly easy to write operators that will prod(,ce (o strainlts that are computationally

too expensive. The user must therefore be careful to forniulate his domain in such a way

as to ensure that this computational cost will be reasonable. lor example, in the mobile

robot domain, an initial attempt at a solution dedinced soniet hing al)out every location that S

was not adjacent to some new location. This works ii ne when I he location being moved to

is instantiated; when it is not, however, the nninber of tlii gs that can be "not adjacent"

to it is enormous. This causes a pred constraint with ;, hige number of disjuncts to be

added to a variable, and this constraint must later be proc'ssed frequently during subsequent

unifications. Htowever, a second attempt at writing such a dlduictive rule produced efficient

constraints and made use of universal quantification and the ,ot-same constraint.

4.3 Unification

VeSystem efficiency depends upon the algorithm for unifying wo variables with constraints.

This algorithm underwent several changes during early development of the system before

providing its current levels of acceptable performance. One of these changes included check-

ing for and ignoring pred constraints that are subsumied by other pred constraints. While

this does not affect the computation of the correct answer, it significantly improved sys-

tem performance. Here we describe our solution to the central problem of handling pred

constraints.

During the unification of two variables, pred constraints force the system to determine

whether a set of instantiations will be compatible after these two variables are unified. In

the above example, if the system is trying to unify the variable x with the object A, it must

find an (x, yi zi) in the pred constraint on x such that xi and A can codesignate. It should

then check that the other members of this set (y, and zi in this case) can codesignate with

their corresponding variables. Checking every member of the set in this way would propagate

unifications throughout the system as variables are matched recursively. In the worst case,

every constraint in the system might be checked each time a variable is unified. This is

computationally unacceptable. Furthermore, loops may be created because the system may

recursively unify the two original variables again.

3% % N %



To avoid the above problems, the ification algorithm does a complete check of con-

straints only at the top level of recursive calls. At lower levels of the recursion, the algorithm

still checks all constraints, but this time recurses on pred constraints only for variables that

are instantiated (effectively assuilig the uninstantiated variables will be acceptable). This

approach avoids both the problem of needing to check for loops and of the unification becoin-

ing prohibitively expensive. This algorithm has proven satisfactory in practice. It matches

exactly the variables one would Hit nit ively expect from looking at two levels of the const rai il

network. The idea of checking the instantiated variables at the lower levels of recursion is

critical for achieving our level of performance, because it is frequently the case that most

variables in a problem are i istaiitiated. Although no invalid unifications have been detected

in practice, the consequences of an invalid one would generally be the unnecessary searching

of a portion of the search space that did not contain a solution (as the problem will be dis-

covered at the end of each )lanning level when the global constraint satisfaction problem is

solved). This would not be i cat astrophie. although earlier versions of the matching algorithil

that (lid permit invalid unifications caused problems in the replanning algorithm.

SIPE's unification algorithim is similar in spirit to that used by Allen for maintaining

temporal relations [2]. Allen's algorithm guarantees only consistency between three-node
0

subnetworks of the overall coiistraint network. The algorithm therefore permits incoiisistent

labelings of a network, but Allen still considers it the best practical solution, since it avoids

an exponential search while producing useful results. In SIPE, the plan critics will eveiit allv

find any inconsistencies and initiate backtracking so that a valid solution will be fomid.

Not-pred constraints cause little problem. They specify one set of codesignatio con-

straints that must riot all simultaneously be true. This is used to avoid selecting a set of

instantiations that will have the effect of some previous action making a predicate we care

about false. In Chapman's terminology, not-pred constraints denote a clobbcr(r of a )redicate

the system cares about. The local check made in unification is fast: if all these codesignation

constraints must currently be true through direct means (e.g., same constraints between the

two variables, or their instantiation to the same object), then the match fails, ot herwise it

succeeods. The case where lie variables do not directly codesignate. but may do so implipcit lv

by weight of lie global bo(ly of coust rai tits. is recognized when the global constraint sat isfa c-

tion problem is solved at each planning level. This global satisfaction will fail if instanliations

cannot be found which satisfy the nol- pred constraint, and the system will then backt rack.
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Chapter 5

The Truth Criterion

The truth criterion determines whether a given formula is true at a given point in time.

Its efficiency is crucial to any quest for heuristic adequacy, as it represents the most basic

operation of a planner. It, in turn, relies heavily on uni fication, which lerefore must also be

efficient. Chapter 4 described how SIPE's unification algorithin efficiently solves the problem

posed by unification when constraints are present. Because of the central importance of the

truth criterion, SIPE's is explained in detail in this chapter. Chapnan [.1] says (justifiably)

that "SIPE's treatment of [derived effects] is incomplete and not generally correct". This

chapter provides enough information to add precision to this statement. In particular, it will

be shown exactly where the heuristics in SIP'E cut corners. how the l)ainner will later correct

i)roblems that are introduced, and why the truth criterion is useful in practice. (This is the

'p, most technical chapter in this report, and some readers may want to skip the latter parts of
S" it.)
'%

% The efficiency of our frame problem solution comes from th, assumt iou that no )re(licate

changes its truth value except when it is mentioned in the effects of an action, and( from

special heuristics for avoiding the NP-complete problem int roduced by l)arallel actions. These

heuristics prevent SIPE from reasoning about all possible shuffles of the parallel actions. The'Il,

former assumption is an extension of the STRIPS assumlption, used in such seminal planners

.-. as STRI'S, NOAII, and NONLIN. The (strict) STRIPS assumption is that no predicat e

will change its truth value when an event takes place iiless the event explicitly lists that

" predicate on its add or delete lists. SIP E extends this in two ways. First, it permits universally

quantified variables in its effects, enabling one ipre(licalo iristau'e to em-ode a whole set of
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ground predicate instances. Second, there are no add and delete lists; all effects are ill oiei

list, which can contain both negated and unnegated predicates; and, most importantly, these

effects can be deduced in a context-dependent manner rather than )eing specified in an.

operator.

In past planners, use of the STRIPS assumption has made operators unacceptably difficuilt

to describe (see Chapter 6). SIPE avoids this by using constraints, resources, and deductive

causal theories to reduce the representational burden of operators. The chapters on each

of these topics describe how these mechanisms can be used to represent powerful operators,

without explicitly representing all their effects. Since all deduced effects of an action are

added to the action's effect list when the action is inserted in the plan, the truth criterion

can operate solely on the effects of actions in the )lan (similar to the way STRIPS uses the

add and delete list of actions). In fact, in the STRIPS domain of ground, linear plans, the : %

truth criterion is basically the STRIPS algorithm.

However, other features of SIPE, particularly constraints, variables, quantifiers, and non-

linearity, complicate the problem. Because of the power of a constraint-based representation

with variables, it is not enough for the truth criterion to return true or false. It will do so

when such a truth value is forced upon a formula without further instantiations or posting of

constraints, but in all other cases it should return a set of constraints that can be posted to

make the formula true. The truth criterion returns such sets composed of same. not-same,

instan, not-instan, pred, and not-pred constraints. Unlike other classical planners, limited

forms of disjunction and existential and universal quantifiers can occur in certain places in 0

the system. As we shall see, details of the system's representation determine restrictions on

quantifiers and disjunction. SIPE's quantifiers are restricted versions of the quantifiers in

first-order logic, but are nevertheless quite useful.

Another slight complication is that all predicates in SIPE can have three values as their

sign - they can be negated, unnegated, or unknown. Like many previous planners, SIPE ,A

makes a closed-world assumption, assuming that if a predicate is not given in the world

model, then its negation is true. (This means that the user does not have to axiomalize

the enormous number of formulas that are not true in his domain.) This is not critical; the

svstem could easily be changed to assume that a predicate's truth-value is unknown unless

an explicit mention of the predicate is found in either negated or unnegated form. The use

of a deductive causal theory does not violate the closed-world assumption; it is used only to
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0deduce effects of an action when the action is aeidued to a plIan (thus spacriiong thre operator thai

represents the action from having to specify these effects).

5.1 The Formula Truth Criterion air

SIPI's formula truth criterion (FTC) determines the truti of a formula at a oi lt in t i ile.
The latter is representedl by a particular node in a plan which wve will (ctll the (liIr' 'id( >K.

Since a formula is a conjunction where each conjunct is a presicate or a itited fori of

disjunction, the TC is easily reduced to a predicate truth criterion ( P'T( ). This red ion

is (lone by calling the PTC in turn for each conjunct in the formula. If a conjunct is of hie ls

form (OR prcdl prcd2.., pscdN, ti th sean a athe systed will use only the first

prelicate that has possible matches. (Thus, if toredl has some phossile mnatches. they are the

ony matches that will ever be considered.) This rendering of lisjunction hltl s proent usful i i

practice without introducing additional comnplexity, and its use is rest ric'ted for exa iI lc~,

disjunctions may appear in precondlitions of operators but not in effect.s of act io)ns.

When the FTC calls the PTC and receives a set of constraints in return, these costraints

are inmediately posted in such a way that they (and any propagated co~ise(lrerlces) cart be
dleletedI should a later predicate in the formula fail to ihe satisfied. This posting of interuedliat e

constraints is a vitally important part of the FTC, because these constrain~ts ofitn greatly

reduce the number of possilbilities to I)e considleredi dIuring later calls to the l'l(! while

matching the same formula. This is somewhat complicated in addlitionl to thle possib~le

(deletion of consequences already mentionedl, thle most concise const raimit cannot be formulated

until all predicates have been matched. Thus, the constraints a(t(led earlier in lihe formula

might be large and could slow down all future matching. SIPE solves this problem by

implementing a check for constraint subsumption.

To explain the PTC, we will first describe the algorithmn for ground, nonlinear plans, i.e.,

plans with only groun(l instances of predicates as effects (this is the simple context in which

STRIIS operated). Then we will introduce the enhancements to this algorithm necessitated

by variables, quantifiers, and nonlinear actions. The PTC also has special techniques for the

computation of numerical quantities, hut these are described in (apter 1l with tie other

algorithms for numerical reasoning.

%
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To determine the truth of a ground predicate (referred to as the query predicate) in a

ground, linear plan, the truth criterion simply looks backward from the current node until A

it tinos an effect that has the same arguments as the query predicate (regardless of the sign -

of the effect). If the sign of the effect (which can have three values) is the same as that of

the query predicate, then the query is true, otherwise it is false. If the PT( retreats to the

planhead node of the plan without finding the query predicate as an effect, then the predicate

is true if it is negated, and false if it is either unnegated or unknown. Thus, a predicate that

has unknown as its sign will only be lound to be true if there is an effect denoting that

the predicate is unknown. Any predicate that is true by virtue of being true initially and

remaining unchanged will be matched just as would a predicate that was made true by a

later action, since the description of the initial world is the effects of the planhead node at

the beginning of the plan.

5.2 Introducing Variables

Once variables are permitted in predicates, the PTC becomes more complex. Effects no % %

longer determine the truth of a predicate, rather they are possible matches for the predicate,

depending upon how the variables are instantiated. We will describe the complications intro-
duced by this, without initially considering additional complexities imposed by quantifiers.

SIPE variables (liffer from variables in logic. The former are introduced into the )lan by

application of an operator which may place constraints on a variable before it is introduced.

The argument slot of an operator can specify constraints, and constraints are added by I he .

truth criterion when matching the operator's precondition (so that a variable will match all

and only those objects for which the precondition is true). Thus a variable is not a true wild

card, but rather something that matches only certain objects as determined by its constraints. S

First, let's define some terminology. Chapman [4] introduces the notions of establishcr, A-*,

clobberer, and white knight. An establisher is an effect which necessarily asserts a predicate (in

the ground case, all assertions were necessarily the case), a clobberer is an effect that possibly

denies a predicate (depending on variable instantiations), and a white knight is an effect that

will reassert the predicate denied by a clobberer in any situation where variable instantiations

actually make the latter deny the predicate. Two variables/objects neccssarily codfsignatc

if they are the same objects, are instantiated to the sam,, objects, or are constrained to
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Effects1: (A) Effects: -(P PE) Eff ect s: -(P x 2) Effects: (P x3)

Figure 5.1: Effects with Variables in a (;eneric Plan

be instantiated to the same object (with the same constraint). Two variables can possibly

codesignale if they unify, i.e., if it is consistent to assume they have the same instantiation. We

will say that two instances of the same predicate neossarily/possibly codesignate when the

corresponding variables in the arguments of each predicate (except for numerical variables)

necessarily/possibly codesignate. Whenever the term codesignate is used wituout a modifier,

it means that the objects in question nLecessarily codesignate. Possible codesignation will

always be referred to explicitly.

An example will hell) to explain these terms and will be useful for explaining the PTC.

Suppose we are trying to determine the truth of (1P A) at the end of the plan in Figure

5-1, where A is an object and xl, x2, and x3 are variables. In this case, with Chapman's

terminology, the effect of the planhead node is an establisher, the effects of P1 and P)2 are

clobberers, and P3 could be a white knight for either PI or P2. It would be a white knight for

P2 if the system enforcod a codesignation implication saying that whenever x2 designated A

then x3 also designated A. SIPE does not use the notion of a white knight because specifying

such implications can be too complex and inefficient. As Chapman says, "making [a codes- e
pS

ignation implication] is tricky; this can not directly be expressed as a constraint" [4]. One

way of enforcing this implication would be to make x2 and x3 codesignate, but this makes a

commitment that may prevent a valid plan from being constructed.

Even if there were a way to express this constraint efficiently, there is the problem of

choosing for which clobberer to be a white knight. We assume the actions were not inserted

in the plans specifically to be a white knight - for example the plan in Figure 1 might have

been constructed to solve some goal other than P (not all the effects are shown), and when

the planner later discovers that it needs (P A) to be true, it will have the problem of assigning

white knights to clobberers to make it true. If there are n possible clobberers followed by 71

possible white knights, then there are n2 ways to match them one-to-one, but the problem

is not so simple as one-to-one matching. In fact, there is a combinatorial explosion one

I
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white knight might take care of a whole set of codesignating clobberers, and. as new actions

and constraints are generated, it may be best to reassign white knights to clobberers.

SIPE's solution to this problem does not distinguish between white kniglits and est ab-

lishers. Roughly. both are treated as "possible establishers" which we will refer to as p-

cstablishcrs. '['lie problem is solved by posting pred and not-pred constraints to assure a

p-establisher that is not clobbered, given the current state of the plan and co(lesignation con- S

straints. This is done without making any commitments that are not forced. thus introducing -A

no branch points in the search. The disadvantage of this scheme is that tlese constraints

need to be recomputed when new codesignation constraints are added. Since only constraints

compatible with the existing ones are added, recomputation represents more a narrowing of •

possibilities than a jump to a different solution.

There is a tradeoff in determining how often to recompute such constraints. Recomputing

them all whenever a new codesignation constraint is added is obviously inefficient. Instad.

SIPE recomputes them for each variable in a predicate every time that predicate is checked

with the truth criterion. There is almost no cost involved, since the truth criterion must

essentially compute these constraints in any case. Thus, this recomputation of pred an(l not-

pred constraints is preferred to specifying codesignation implications, both for efficiency and

lack of commitment - note that the system essentially "reassigns" white knights dynainically

as the plan evolves. The only theoretical problem with this scheme is proving that the

recomputations happen frequently enough. SIPE atteml)ts to ensure this: for example, all

preconditions of operators that have been applied are recorded in the plan. and every time S

a new operator is applied the system checks all preconditions that come after it in the plan.

This assures that no addition to the plan will negate assumptions on which the remainder

of the plan is based. These mechanisms should recompute the pred and not-pred constraints

on all variables used in goals or preconditions before the constraints are used by the other 0

critics. One could not prove that SIPE always recomputes these constraints often enough

certainly under interactive control, the user can allocate resources whenever he wishes. *"

However, this has never been a problem in use of the system, and the automatic search could

easily provide such assurances at some computational cost. ',-.

To determnihie tie truth of a query predicate with variables in a linear plan (ignoring

quantitfirs). the iPTC looks backward from the current node. continually finding effects that ,V,

possiblv c,,dv'sign ate with the query predicate (regardless of the sign of the effect ). It main-
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tains a list of p-establishers and clobberers for this query, ading elfects that are possible

matches to these lists when appropriate. If the sign of the effect and the sign of tle query .

predicate are the same, then the effect is a candidate p-estal)lisher, otherwise it is a can(li- -

(late clobberer. However, these candidates are never added to the lists if they necessarily

codesignate with any effect already on either list. Thus if a clobberer is followed in the plan ."

by a p-establisher that codesignates with the clobberer, the latter never becomes a member 1.

of the clobberer list. Likewise, a p-establisher followed by a codesigiating clobberer never

makes the p-establisher list.

This traversal of the plan can end in two ways. It ((s when the begin ning of the plan

is reached, in which case the closed-world assumption will act as a cod(esignating establisher
for negated query predicates and as a codesignating clobherer for all other predicates. It -.

also ends whenever some effect necessarily codesignates (as either a clobberer or establisher)

with the query predicate. The PTC thus produces a clob(erer list,, a >-estalisher list., and

a flag denoting whether termination of traversal was caused t)y a inecessarily cohsignating

clobherer or establisher. "

If the query predicate is constrained to codesignate with soiie niernier of t he l)-estahblisher

list and to not codesignate with any member of the clobberer list, then it is necessarily true
0

in the current plan, as so constrained. This is accomplished by p)ostir g pred anid not-pred

constraints (see Chapter 4). Sometimes the FTC is called simply to test applicability of an

operator without actually applying it, in which case constraints (1o not get piosted. In general,

the FTC will convert the p-establisher list into a pred constraint, and the clobberer list into

a not-pred constraint. However, when traversal ends with a codesignating establisher, then %

only the not-pred constraint is posted, since the query predicate will necessarily he true as

long as none of the possible clobberers codesignates. Pred and not-pred constraints may be

converted to same and not-same constraints when there is only one possible way to make S

a query true. When the PTC is again applied to a predicate codesignating with the query

predicate, pred and not-pred constraints are recalculated by the new application of the PTC.

The rest of this chapter explains enhancements of the predicate truth criterion in great

detail. The casual reader may want to skip ahead to Chapter 6.
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State-rule: Deduce-clearIO

Arguments: objectl1,olbject2, object:3 ('lass PLxistential;

Trigger: -(Oil object I olbject2);

Condition: -,( On object3 ohject2):%
Effects: (Cl1ear object2);

Figu re 5.2: A SIN l lock-World Deductive Operator

5.3 Introducing Existential Quantifiers

Unlike other classical lplanners. Sll~-. permits limitedl formis of quantifiers. While these are

restricted versions of the quantifiers in first-order logic, they are nevertheless quite useful.

Th'le closed-world assumption leads to restrictions on the use of quantifiers. Formulas of the

formi 3x '( x) and Vx . -P(x.) are relatively easy to compiute, since they Involve searching"

for occurrences of unnegated p~redicates. Iii SI P F existential variables call appear only1 ill

preconditions (and conditions, as we shiall see later), andl are usedl to represent hothI these

forms. Disj unction and existential quantifiers are not lwrit ted in thle world miodel or- ill the%

effects of actions - -- otherwise, the truth of a lpredi~cate couldl tot be (letermninedl direct sI ilce 9

it would dlepend onl which dlisjuinct was true or to whlicht [uiniknow nj object the exist en t al .

variable referredl.

In negatedl pred(icates, thle existeintial (qtantifier is scolped (by (lefintitioni) with ll th li nea-

tion, yielding a formul a, simliilar to thle previous un iversally quantified formula. WVhi le siml Ia r,

these formiulas are ntot equivalent because of restrict ions (described below) thIiat are placed

on the meaning of existential qu anti fiers iin ordler to coliplit e t hin efficiently. Th'le scopte of'

each existential qunantifher is local to tie( predicate iii which it occurs. Let us consider tie N

block- world D ed uce-c(lear (ledlutctivye operator iii Figu re 5-2. Th'le utse of suich op~erators will

he explained iii ( 'hapter 6; here we are coiiceriied wvithi the nmatchiing of its condit ion by thle

rrc. Deduce-clear is usedl to deduce that a block is clear in any situation, even iii a world1

where several blocks may be oii top of another block. In this exam ple. Object3 is declared to

be anl existential variable, withI the quantifier scoped locally to the predicate iii tie( conittion,

- ~within the negationi. Itlus, thle I'TC is trying to determinie the( trthI of a formula simiilar to

the first-order logic formtula Vobjecci.-Ot( objcct3 obfict02). lDeduce-clea r will deduce t hat a

block originally supportitng N btlocks will be clear only after N actitons remtove blocks.
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For an un negated query predIicate withI an existential variable as a in drgiinieli, th.Ile o'i Iv

change to the PTC makes it more efficient. In the case of unary prvlcatv '. i liy p-est a~blI.sl:er

becomes a codesignating establisher that terminates the tmrversalI of tw ieaii ( siliCe ;1ll we

care about is whet her or not somie binding exists for thle variable). F-or iredli cates' with1-

more argu ments, the same termination results w heni all nolmexi st enl iI a rgiiinit, s lecessa ri

codlesignate (assuming all existential arguments possily co(dsiglite().

JDetermii n the t ruth of a negated query p~redlicate with an existenutial variable. such

as t hat in 1)ed uce- clear, is more com-plex. For each predicate occiurrenice t hait is a possiblle

clobberer of the query predicate, the system must find a p-establisher t hat follows this c-lob-

berer in the plan. To accomplish this, the lPTC constructs; a list of codesignatioli conistraints

that it will temporarily assume for the duration of the match of this qluery predicate. These

temporary constraints match each clobberer to a p-establisher to dletermline whether there is

some way, given the current p~lan and~ conistraints, to make the predlicaite t rue. Thle temiporary

constraints are never posted, and do not become part of the pred or not- l)re( const rainits that -

are genierate(] ( any constraints that would be posted wit hout thle existenitial are still plosted ). p

Thus no constraints force the system to maintain the truth of thle query predicate. .As with

predl and not-pred constraints, SIP~E relies on the fact that the PT(' is recomputed evry

tilne the truth of thle p~redicate is checked.

The combinatorics of possible ways to match clobberers to p-estalilishers aire elimninated

by assu min' t hat each hew clobberer the PTC adds to its list mi ust inituI cli adi ffereint Ii-

estalhisher, and that the PTC simply mnatches it to the first p-establisher t hat will work.

Thuus there is no search involved, b)1t we oly compute t lie t rue first -order logic equivalent

* ~~of the quantified formula ill cases where variables that (10to0 noc a il codesi gnuate can lie

%:assumnedh not to codlesignat e Note that if two clobberers liecessairilv coles iliat e thleni lie

* ~~~~second~ onie is niever adldld to lie PTU('s list and is therefore (iii p1 ltv m latciiltitiesle

p-est ablislier as thle first one. This algorit bin maintainls thle "least couuli l t " applroachi by

* ~~not assuin g codesignat iol consiraints until forced to do so. Wh\l Ic ot purovidlinug a comnplete

* ~~existential quantifier (which caninit be donue withbout sacrificinig luiuristic auleqilacY ) SIFI

(does provide a useful touol that is certainly better thiani not having al~ivnug. whuich is lie

choice ill other classical plannuing systems. The user cani emuploy i Ins touol wheni his problem-

* ~fits wit hin its rest rictions, aiid igniore it ill other cases.

'Ilue, existentiail qu11iitifr pirovidedl li SIN", is u1seful for I lit'' 'soli it lids pro iil

% %



useful in practice; many domains do have the property that new variables are generated only

when they do not codesignate with existing variables; and( it is still useful in domains where

codesignations change. One of the reasons for the latter is that the PTC, is constantly being

recomputed for this predicate and will react to the addition of new codesignation constraints.

Furthermore, the only effect of not forcing codesignations in order to mnatch an existential 0

variable is than some operators may fail to be applicable when one might wish them to be

- the system does not produce invalid plans because of it. This can be cured simply by

providing more operators to the system. -

The Deduce-clear operator provides an example of the usefulness of such a tool. It can I

deduce that a block originally supporting N blocks will be clear only after N actions remove

blocks. This will succeed even if the N actions that remove blocks have not yet been instanti-

ated (which means that it is not yet known which blocks will be moved). The restrictions on

existential quantifiers cause no problem in the block world because different actions that put

noncodesignating blocks (variables) on another block can end up with these blocks codesig-

nating only if there is an intervening pickup action between the puton actions (in which case

there is still a p-establisher for each clobberer using SIPE's algorithm). One would expect e

other interesting domains to have this property.

5.4 Introducing Universal Quantifiers

SIPE's universal quantifiers differ from their counterpart in logic, but again provide a use- •

fil capability. Universal variables are permitted in the effects of actions, and are inserted

primarily by the deductive causal theory. As expected, a universal variable in the effects of

a node means that the effects are true for all objects that match the variable (taking into

account the constraints on the variable). lowever, universal variables in preconditions are 0

treated like any other variable (i.e., the quantifier is ignored) the only use of quantifiers in

preconditions permitted by SIPE is implemented through existential quantifiers (which can

implicitly do a limited form of universal quantification on negated predicates). Thus, if X is

a variable denoted as universal in P, a precondition, it means that only instantiations of X 0

for which P is true will be considered hereafter (i.e., r I 1'(x)), not Ihat !P must be true for

all possibilities (i.e., Vx.P(x)).

When variables are introduced during operator applicaalion they are constrained by the

19

%'

-'St
a



Causal-Rule: No-longer-nextto

Arguments: robot 1, locationl1,object2 (1la.ss (I niversal;

Trigger: (At robot! locationl);

Precondition: (Nextto robot I object2);

Condition: -,(Adjacent-lot object2 location l);
Effects: -(Nextto robot I object2);

Figure 5.3: Causal Ruile for Updating Nextto in the Robot Doniain

systemn to niatch all and only those objects for which the precondition of the otperator is true

(as well as inherited constraints specified in the argumient list of the operator). (_'onibining

such a constrained variable with SIPE'~s universal quantifier effectively represents a certain

subset of objects that can be used in the effects of actions (i.e., an effect predicate with

a universal variab~le can be read as "for all objects that unify with the universal variable,

this predicate is true").' Trhis ability to formi subsets is useful and powerful, and exploits the

systemi's representation and algorithmns for the purpose of rep~resenting a nunmber of assertions

comnpactly as a single predicate with a universal variable. A priniary advantage of this

approach is the gain in efficiency that is achieved by mnatching only one p~redicate when calls%

to the PTFC regress back to the node containing the universal variable in its effects, instead of",.

having to inatch a p~redicate once for each niember of the subset replresentd~ by the universal .

variable.
The miobile-robot domain provides an examiple of tie use of universals. In one solution,

we keel) track of all objects that are next to the robot. Th'le causal rule shown in Figure 5-3

adds -,Ncxtto predicates to the effects of any action that nioves the robot. (Th1is effectively O

J'.

eliniinates the Ncxtto predicates that are no longer true after the robot has 11oved.) When

the precondition predicate (Ntxtto robotl object2) is niatched, it will constrain the variable

obje12 to inatrh only those objects that were next to the robot before it inoved. Th'le

condition predicate will further constrain obj(,t2 to not be any object, that is adjacent to

the new location of the robot. 'lThus the constraints on the universal objcct2 ensure it will

mnatch exactly those objects that the robot was next to before it nioved b~ut was not next to

Note that not all arguments of a deductive rule are universally quantified in this way. Some are parameters

of the action for which we are deducing effects, while universal variables do not dlepend on the parameters of

the actlion.
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afterwards. This effectively picks out the subset of objects that interests us and allows their

efficient representation.

Note that the constraints on object2 may refer to variables instead of actual objects. For

example, the constraints may specify that object2 must match one of a set of N planning

variables. Some of these variables may not yet be instantiated, but eventually they will be.

Perhaps they will be instantiated to N different objccts, or they may all be instantiated to

the same object. There is no matching problem because the constraints on each of the N

planning variables specify all relevant information (e.g., which variables and objects these N

planning variables are or are not identical to).

The further planning of actions occurring either earlier or later will not affect the validity

of the universal variable in the Nextto predicate that occurs in the deduced effects. This is

true by virtue of the place where the predicate is recorded in the plan, because the truth

criterion regresses back through a plan searching for effects that can match a given formula.
I

Suppose N1 is one of the N planning variables that will match the universal variable. Let us

consider the two cases of effects that occur after or before the Nextto predicate. If a later
-ft

action specifies (Nextto Flakey N1) as an effect, this latter predicate will always be matched

to a query before the predicate with the universal variable. Thus, the appropriate relationship

between N1 and the corresponding variable in the query will already be determined and will

not be affected by any subsequent attempt to match the query with the predicate containing

the universal variable. Now, let us consider the case where further planning of an action

before the one containing the Nextto predicate as an effect will be clone at the next lower

[hierarchical] planning level. In this case, SIPE recomputes all deductions that follow at that

lower planning level. In particular, it deduces a Nextto predicate at the new level whose

variables and constraints have been properly calculated for the new situation.

Changes to the PTC required by universal variables are detailed anml not of great im-

portance. Primarily they involve the fact that matches to universal variables can often be

considering necessarily codesignating. In early stages of its development, SIPE did not per-

mit a variable marked universal to appear in a precondition or have additional constraints.

Allowing them to have constraints made them much more useful but entailed a major change,

because before a universal variable always matched as n,,cessarily codesignating. With con-

straints, universals are sometimes only possibly codesignating. For example, when adding to

its clobberer or p-establisher lists, the PTC must add a predicate with a universal variable,
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even if it matches an earlier entry that does not contain a universal variable (thus treating

the match to the earlier entry as noncodesignating). Similarly, the PT(C's traversal of the

plan cannot be halted by matching the query predicate with an effect predicate containing a

universal predicate.

The PTC's traversal of the plan is halted in one special case. Certain predicaies are

"unique" in the sense that they have one argument with the property that no other instmnces

of this predicate can be true if they vary only this one argument. For example, a block caIi

be on only one other block. The effects of creating such a situation can be easily expressed by

saying the unique predicate is true and that the same predicate is not true when the unique-

argument is replaced by a universally quantified variable. For examl)le, in SIIPE one can

have the effects (On blockl objectl) and -,(On blockl object2) where object2 is universadly

quantified and constrained not to be the same as objectl. SIPE halts the PTC's plan traversal

when a pair of such effects assure that all possible matches have been considered. Briefly, this

happens when two effect predicates like those above necessarily codesignate with the query

predicate in all argument positions except one. When the two predicates have opposite sign,

their two entries in this argument position have a not-same constraint each referring to the

other, and one of the arguments is universally quantified, then the traversal of the plan can

be terminated because all possibilities have been covered.

While the not-same universal special case may seem trivial, it has proven quite useful

in practice (see Chapter 6). While the effect of terminating the PTC early is desirable, the

primary advantage comes from the generation of much smaller pred and not-pred constraints,

especially in long plans. This makes unification of variables in every part of the system (e.g.,

the plan critics) faster. Such algorithms are discovered only by implementing and using a

planner, and analyzing how it can be made more efficient.

5.5 Introducing Nonlinearity

As Chapman has shown, nonlinearity makes the truth criterion NP-complete (given a reason-

ably powerful representation). SIPE allows a restricted nonlinearity and provides mechanisms

for circumventing the NP-complete problem within this nonlinearity. One of the Iasic re-

strictions is that given a set of parallel subplans, SIP)E will only reorder them by puliting

a whole su bplan before or after the ot hers. Thus it can not. produce all possible shuflies of
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the primitive actions in the subplans. This reduces the number of possibilities enorrmously.

While this restriction is not acceptable in complex scheduling problems, it is quite useful
0

in problem-solving types of tasks. Classical planners are not good tools for big scheduling

problems in any case - -they would be better as part of a larger system in which the classical

Al planner produces a plan that meets certain goals and then gives this plan as input to a

scheduling system that applies powerful computational techniques.

An important technique for dealing with nonlinear actions is distinguishing between main

effects and side effects of an action. The system guarantees that the miain effects of parallel

actions will all be true at the end of the nonlinear part of the plan. This is implemented

by the plan critics which are described in Chapter 9. While matches to these main effects

are guaranteed to be correct, for other predicates the PTC merely proves that there is one

possible ordering of the parallel actions that makes the predicate true without enforcing that

order.

Proving that there is one possible ordering is very efficient the ordering itself need

not even be calculated. When the PTC regresses to a join node that marks the beginning

of a set of parallel branches, it recurses on itself for each branch, constructing new lists of

p-establishers and clobberers for each branch. The recursively entered PTC has copies of the

top level versions of these lists (as they existed at the join node), and effect predicates are not

added to the new lists unless they would also have been added to the top level versions. They

are added to the new lists just as the would have been to the top level lists. Termination

of the traversal of the plan is also done for the same reasons. Necessarily codesignating

effect pre(licates terminate the traversal of the current parallel branch when they make the 

query predicate false, and of all parallel branches when they make the query true. Not-

same universals and disproofs of negated existentials (as discussed above) can also terminate

traversal of all parallel branches.

Once the ITC has collected the new list of p-establishers and clobberers for each parallel

branch, it appends all the p-establishers and adds them to the to) level p-establishers list

using the normal riechanism (which eliminates duplicates). After this, all the new clobberers

are added to the top-level clobberer list using the normal i mechanisin. Thus, a clobberer

will not be al(led (to the top-level list ) if there is a p-establisher on any l)arallel branch

that co(lesignates with it. Thus, the algorithm efficiently calculates whether there is any .a

possi blo shuffle of lie branches which will make the query predicate true. The to)-level lists
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so constructed can be used for continued traversal of the plan preceding the split node at the

beginning of the parallel branches.

The PT(' treats conditional branches in conditional plans in the same way as parallel

)ranches. The system effectively assumes that if something is made true on any conditional

branch then it is true after the endcond node. This implements tile assumption that the

world is pretty much the same no matter which branch is taken (as discussed in Chapter 3).

Because the ITC only finds that some ordering makes a query predicate true without

calculating what the order actually is or enforcing it, different calls to tile PTC could return

values based on contradictory orderings. Thus invalid plans might teinporarly be produced

(though only in nonlinear cases). However, there are mechanisms for preventing the system

from making contradictory assumptions about different orderings as planning proceeds. For

exampe, once an operator is applied based on the truth of its precondition (which may implic-

itly assume additional partial order on earlier parallel actions), this precondition is recorded

as being true at that point in time so that no later action ('ai assume otherwise. Similarly,

goal and phantom nodes recc:d the truth of their effects for all succeeding nodes. Because of

this, different calls to the PTC for the same )redicate could not make contradictory order-

ing assumptions because earlier assumptions would effectively be enco(ed in precondition,

goal and phantom nodes. Thus, contradictory ordering assumptions can only occur when

the ITC finds values for two different predicates that are both side effects in the unordered 0-%

subplan, and it happens that no one ordering can make both values true. The discussion %

below explains that such contradictions are often only temporary, and that there are ways S

to avoid them. (One somewhat far-fetched advantage of this is that the two predicates could -

)oth be true in some shuffle that SIPE itself could not generate, but that could be generated ,

l)y a specialized scheduling algorithm that took the SIPE plan as input and considered the

truth of various predicates as constraints on the ordering of actions.)

The above solution again follows the "least commitment" strategy of not committing to

an order until it is forced. It has proved to be a useful compromise that provides the user with

a powerful tool to produce useful plans efficiently. The potential for contradictory ordering

assumptions has not been a problem in practice. The user can always encode all important

predicates as main effects and the plan critics will then assure a correct plan. Since SIPE

provides flexibility in specifying main and side effects, it is easy to change any problenlatic .r%

predicate into a main effect. Another reason for te success of this algorit m is the fact p
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that aiiy contradictory ordering assumptions produced are often only temporary. Plan critics

sometimes correct them, and further planning is often forced to make commitments about

ordering. SIPE immediately reacts to further ordering constraints by updating the relainder 0

of the plan to be consistent with the new ordering. This involves redoing all the deduclio s

that come after the reordered part of the plan, ais well as checking preconditions and pha.n-

torns. Since the implicit ordering assumptions are calculated for each predicate every time

the PTC is called on the predicate, the system will immediately purge itself of any imnlplicit

contradictory ordering assumptions that are corrected I)y the addition of ordering const raints.

Lastly, the system could make final checks to assure correctness at some computational ex-

pense. It is easy to identify l)redicates that may make implicit ordering assumptions. For

each of these, the system could calculate (at linear cost) two subsets of parallel branches, one

of which had to precede the other to make the predicate true. Then the requirements of all

predicates could be checked for contradictions. t.

5.6 Summary

The truth criterion has proved to be a useful compromise that provides the user with a

powerful tool to I)roduce useful plans efficiently. This chapter describes all the heuristics that

have been incorporated to provide this performance. Universal quantifiers improve systen

efficiency, and existential ,quantifiers, though not as powerful as their true first-order logic

equivalent, provide the user with a new and efficient tool. Chapter 10 describes further facels

of the truth criterion having to do with numerical quantities.

e%\
While it is easy to criticize the nonlinear algorithm because of the contradictory ordering

assumptions that may be made, one should consider the alternative: solving an NP-complete

problem. If one can afford to wait an arbitrary amount of time for a planner to determine if

a particular predicate is already true or not, then Chapman and Pednault [22] provide sound

algorithms. However, if one wants to use a planner to solve real problems, the algorithm

above, or at least the traeoffs it makes, will likely be of interest.
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Chapter 6
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Deductive Causal Theories

p.

use of the S rIPlS assumption has nmale oierators unacceptably difficult to describe in ,

previous clas~sical planners (sve the examp~le below). One of the primary reasons for this is that

I

all effects of an action must be explicitly staletd. While thle desirability of deducing 'onlte'xt,-

dependlpnt effects is obvious, iprevious STRllPS-assumption planners have not incorporatedl.'

4,-

such a capability. There are many problems in implementing it [3,11, especially if an expressive ,

formalism is used] to specify the rules (simply allowing variables causes problems). rwo of

the most obvious problems are decidling when to apply deduction, and how to control its @

combinatorics once it is appllied. Pedlnault [22] and lDean, realizing the critical importance of

this problem, have recently addressed it, though not in the context of classical planners. In ..

this chapter, we present SIPE's solution to deducing context-dependent effect-;. It p~rovides a I

I

powerful capability b~ecause the dlomailn ridles are fairly exlpressive, p~ermitting the constraints--11'

and quantifiers previously dlescrib~ed as well as access to different world states, all of which

would he probh, natic in previous STlRIP)S-assumption plan~ners.

IDeductive causal theories are one of Ihe most important mechanisms used by SIPE to

alleviate problems in op~erator rep~resentation caused by the STIPIIS assump~tion. Selparation,.'

.a-.

of knwledge about causality from knowledge abou. actions relieves operators of much raf their

representational burden since deductive rules allow effects of an action mr<s be (ledluce without -

being mentioned in add or dlete, lists. They permit effec'tive relresentation of a cusar lorty

of the domain, similar to that ad -atod by iean [5, and are therefore refered to as domie

frmicsm isuefoseiy h uesmly allowing variables causesan prbes.Too

ole.. naoionceitis apwledPed ault[2]a -Iaffnt relations io be specifid indvpendenl y of

the ol)erators , hvh h oelraddrs sd th, tlanning nortiss the , silx oplifil. Sic, planners.In

% V%
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effects are deduced, operators are applicable over a much wider range of situations. This

makes it much easier to express domain knowledge as SIPE operators.

Our implementation of deducing context-dependent effects allows the truth criterion to

retain much of the efficiency of the STRIPS assumption, while significantly increasing ex-

pressive power. The (strict) STRIPS assumption is that no predicate will change its truth * .

value when an event takes place unless the event description explicitly states so. This strict

assumption adversely affects the specification of operators (i.e., a planner's representation of

actions or events) in complex domains. For example, it is often awkward to explicitly de- -

scribe all the effects of an action [28], and one is often forced to provide an operator for every

possible situation in which some action might be taken. These problems can be alleviated by

the efficient deduction of context-dependent effects.

Domain rules allow expression of domain constraints within a world state, as well as

permitting access to different world states. Rules that allow the former are generally called

statr rules, while rules that allow the latter are generally called causal rub.. These are

discussed in more detail later. By accessing different world states, the system can react to

changcs between two states, thus permitting effects concerning what happened during an

action to be deduced even though these effects might not be implied by the final world state.

This ability to reason about changes between two states is crucial. Consider the problell

of sliding boxes to the left or right on a table (whose depth is the same as that, of the boxes). If

some action slides a box from the left edge of the table to the right edge, then any intervening

boxes will have been pushed off the table. Suppose the operator describilig such an action

states, as its only effect, that the moved box is located at the right side of the table after the

action. IRules that can only access the final state would find nothing wrong with a second box

being located ill the middle of the table after the action there are no inconsistencies. A

causal rule in SIPE, however, could notice that the transition between the two stales would

involve the block in the middle and deduce that this block must be pushed Off the table.

6.1 A Motivating Example

In this section, we use a simple block-world example to introduce SIPFV's (1ol1 dii rules and

show the limitations of the strict STRIPS assumption. Consider the standard block world.
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with the small extension that some big blocks are large enough to support more than one

small block. A strict STRIPS-assumption Puton operator that represents moving block A

from X to Y, in a world where a block can support only one block, includes explicitly listed

effects of (On A Y) and (Clear X). In our extended block world, (Clear X) may or may

not be true, depending upon whether X supports blocks other than A. The solution in strict

STRIPS-assumption systems is to have two operators, one representing the move of a block

that is the only block on its support, and the second representing the move of a block that

is one of many on top of another block. This presupposes the ability to express and test the

condition of two different blocks being on another block (which may be represented by an

unbound variable at the time of the test), which not all planning systems can do.

The solution in SIPE is a single Puton operator (shown in Chapter 3) that lists (On A Y)

as its only effect, a causal rule that deduces -,(On A X), and a state rule that deduces

(Clear X) when A is the only block on X. The system is easily capable of expressing such

rules, which are shown in Figure 6-1. These domain rules relieve every operator in the system

of the responsibility of deleting On predicates and adding Clear l)redicates, thus simplifying

the description of many operators.

We shall briefly outline the use of these operators. A causal rule such as Not-on (see Figure

6-1 ) is applied whenever an action being inserted in a plan has an effect which matches the

predicate given as the rule's trigger. The trigger is matched in the state that exists after the

action is executed, while the precondition is matched in the previous state. If the precondition

matches, then the effects of the rule can be added as deduced effects of the action. Thus, in the

Not-On causal rule, object3 is bound to the support of objectl before it was moved to object2,

and the deduced effect of -i(On objectl object3) is added to the effects of the action. This

deduced effect will then match the trigger of the l)educe-Clear state rule whose condition

is matched in the current state. Because object-l is constrained to be in the existential

class (scoping rules interpret the condition predicate as -3]objcct4.(On objcct4 objcct6)), the 4.
condition will match and (Clear object6) will be deduced if there is currently no object on

object6.

As more complex domains are represented, it, becomes crucially important to use causal

theories so that operators do not have to encode such knowledge. '[he simplifies tile operators

and allows them to be more widely applicable since the causal theory allow the deduction
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Causal-Rule: Not-On

Arguments: object 1,object2,object3;
Trigger: (On object 1 object2);

Precondition: (On objectl object3);

Effects: -,(On objectl object3);

State-Rule: I)educe-clear
Arguments: object5,object6, object,l Class Existential:

Trigger: -i(On object5 object6);
Condition: -,(On object4 object6);

Effects: (Clear object6);

Figure 6.1: SIPE l)omain rules

of conditional effects. This can reduce exponentially the number of operators required by

the strict STRIPS assumption which needs a distinct operator for every different context in
which the operator may be used (where one context is different from another if it requires

different predicates to appear in either the add or delete lists). If an action can affect N %

predicates, a strict STRIPS assumption might require 2 N operators to represent it, while %

only one operator and N domain rules are needed in SIPE. Furthermore, these domain rules

will in general be used by other operators. Thus a second action that might change the same

N predicates would require one operator and no new domain rules in SIPE, while it would

require another 2N operators using the strict STRIPS assumption.

6.2 Domain rules

fly using SIPE's domain rules, rather than providing a full-fledged logic for deduction, we

maintain strict control over the deductive process, thus helping to prevent a combinatorial

explosion. At the same time, domain rules provide a fairly rich formalism for deducing effects

of an action because they can include the system's entire repertoire of tools: constraints,

conjunction, access to different world states, a limited form of disjunction, and limited forms

of both existential and universal quantification. The control of deduction results from the
above mentioned restrictions on the represertation, the unification algorithm, the use of

triggers, and the efficient truth criterion. The latter two dependt upon the use of douaiti
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rules to deduce context-dependent effects as described in this chapter. *

0%

First, we describe the truth criterion and its interaction with (led ,wed effects. S I PE

performs all deductions that it can when a new node is inserted in the plan; i.e., it. computes

the deductive closure of the (omain rules. The deduced effects are recor(le(l and the system

can then proceed as if all the effects had been explicitly listed in the operator. l)eductions are

not attempted at other points in the planning process (except that they may be recomptited 0

after new ordering constraints are added). This eliminates the necessity of deciding when

to use deduction and of keeping track of which deductions have been attempted, as well as

allowing the basic STRIPS algorithm to underlie the truth criterion. .

SIPI doinain rules have triggers, preconditions, conditions, and effccts. The trigger con-

trols rule application )ecause it must match an effect of the node of current concern (i.e.,

the one for which we are deducing effects) before the rule can be applied. Deducing effocts

from a rule is ,a siiple pr)cess: if the precondition and condition of a riule hold, the effects

of the rile can be added as effects of the node (unless they directly cont radict effects already

ol the node see below). The trigger, precondition, and condition are matched exactly

like any other formula during the planning process, taking advantage of the system's efficient -

truth criterion. ('onditions, like triggers, are always matched in the current world state, while

l)recon(litions are matched in the previous state.

This is easier to express formally, so we will borrow some notation from the situation

calculus. The predicate holds(r,s) states that the formula r is true in Ihe state s, an(l the

function r(.suit(, *s) is the state that results after event c occurs in state .' . Given ; causal

rule withi a trig ,(r r, a precondition 0, a condition k, and effects 0i', the following formula

(lescribes its meaning for all events and states:

Vc,. . hold.,( r. rc.sult( . s)) A -,holds(r, s) A holds(,/, .) A hold.,( \, r(.s lt(( , ) )
D holds(,", result(e,s))

Note that domain rules do not trigger on every formula in result( ,.s), only on those

that were not true before r occurred. This is determined efficientlv iii SI PE because possible

triggers are simply the effects of a node. p

For example, assuming an event occurs in state sl which results in state s2, the Not-On.

causal rule would be expressed more formally as follows (al)breviatinrg object, as obj):
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Vobjl,obj2,obj3. holds(On(objl,obj2),,s2) A -ho1ds(0n(objl,obj2),l)

A holds(On(objl,obj3),sI) D holds(-0 n(obj,obj3), s2) ... .

Domain rules can be divided into causal rules and state rules, )rimarily to provide another

tool for the user. The causal rules are applied first because, using Georgeff's proposed view

of causality [7], one might view a causal rule as representing another action that is caused

by the original one and, that, for our purposes, occurs simultaneously. Considering the •

disappearance of a moved block from its original position as a separate event caused by the

move is reasonable in a world in which some objects may leave copies of themselves behind 

when they move. Once the causal rules are used to determine all the simultaneously occurring %

events caused by the current event, the state rules then compute the domain constraints that

must be true of all these events.

Note that there is no difference between causal rules and state rules other than their order

of applicability -- they have identical expressive power. Domain rules can be declared as state

rules, causal rules, or both. In all domains vet implemented in SIPE, state rules never have .

a precondition (only a condition) while causal rules always have a precondition (and perhaps

also a condition). Thus the causal rules are reacting to changes between states, while state

rules are enforcing constraints within a state. In order to provide more power and flexibilit .

these limitations are not enforced as definitions of causal and state rules.

Initially, all causal rules whose trigger matches a node-specified effect are applied, lhereby .0%le24

producing an additional set of [deduced] effects for that node. After all such rules have been

applied, the system determines which newly deduced effects were not already true iii the given 0

situation and permits the causal rules to trigger on these recursively. This process continues

until no effects are deduced that were not already true, thus computing the deductive closure .

of the causal rules. This process is then repeated for the state rules, initially firing them on

all node-specified effects and all effects deduced from causal rules. In this way the deductive 0

closure of all domain rules is computed while maintaining control of the deductive process

and preventing deductive loops. (To get full deductive closure when some causal rules trigger

on effects deduced by state rules, the user has two options: clump all domain rules together

as either state or causal rules, or have certain domain rules be both state anld causal rules.) .,.%
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'" 6.3 Problems

There are two problems in the foregoing scheme. The first problem occurs while repeatedly

applying the domain rules to produce their deductive closure: a later rule might deduce a

predicate that negates a predicate deduced by a previous rule. Which of these conflicting

deductions should the system allow to stand as an effect? SIPE's default is to accept the first

deduction and ignore the second (though it prints a message as such conflict often signifies a

bug in the user's domain rules). However, there is a situation, first observed in the mobile-

robot domain, in which it is desirable to deduce effects that would be conflicting if they were

to be matched directly against each other but become a valid, nonconflicting representation

of effects when they are recorded in the order they are deduced. This situation involves

the deduction of a predicate with a universal variable that negates particular nonuniversal

instances of the predicate that have already been deduced. This is exactly the not-same

universal that can terminate the truth criterion (see Chapter 5), and is permitted by the

system because it appears to be of general utility.

The truth criterion matches formulas against effects in the order the effects are listed.

Thus, one can initially deduce On(objectl object2), where the variables are not universals,

and later deduce -iOn(objectl object3), where object3 is universal. These deductions will

be recorded in the given order, which effectively encodes the fact that objectl is on objct2

only. More precisely, any formula of the form On(objectl X) will match positively if X can

be constrained to be the same as object2, and negatively in all other cases.

The second drawback of SIPE's design is more serious. SIPE may have to instantiate

variables to match the precondition of a domain rule. However, it may not be desirable to do

this since the instantiation so forced may prevent a solution to the problem from being found.

For example, suppose Block-Deduce-Clear is a state rule just like Deduce-Clear except that

the variable object6 is replace by blockl. This is an acceptable description of the domain since

only blocks become clear; the table is always clear. (As written, l)educe-Clear simply never

matches with objcct6 being the table since something is always on it.) But now suppose the

problem is to achieve On(rcdblockl blueblockl) where the two blocks are left as variables.

After planning an action to move redblockl, application of Block-l)educe-Clear would cause

the truth criterion to return constraints (when matching the condition) that would constrain

redblockl to be a block that was on another block. As explained below, SIPIE would imot post
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such constraints in this situation. Posting them would prevent redblockl from matching a ,.'

block that was on the table, and later planning may discover that only a block from the table V
can solve the problem. 

.

SIPE provides a few tools that help solve this problem. The user can choose whether or
not to permit (in all cases) the forcing of instantiations by the application of domain rules.

The default in SIPE, which has been used in all its applications, is a useful compromise.

The system will constrain variables in an attempt to match a domain rule, but only when

the two variables are already constrained to be of the same class. If a domain rule requires

further specification of a variable's class, it will fail: it is assumed the user (lid not intend the

deduction in this case. This is not a permanent decision. Since deductions are recomputed S

at each new planning level, they may change to reflect the further addition of constraints.

Using this heuristic, the user can control the forcing of instantiations by the classes used in

domain rules.

For example, the Block-Deduce-Clear fails in SIPE whenever it must constrain a variable

representing an object to be a block because the classes are different, although it may match

later in the planning after the object variable is further specified to be a block. )educe-

C]ear, as shown in Figure 6-1, is appropriate for both blocks and tables, and does not force

variables towards either. However, the user might want to force things to be moved off of

blocks in order to clear them, as this is a good heuristic for many block-world problems. NP

This can be done in SIPE by inserting "class blocks" after object6 in I)educe-Clear (or "class

objects" after blockl in Block-Deduce-Clear). Object6 would then l)e constrained to be in .

both the block and object classes, and the system would constrain variables of either class in

an attempt to apply Deduce-Clear. This shows the flexibility our scheme provides the user, "'

but care is required to avoid undesirable instantiations.

6.4 Heuristic Adequacy and Expressive Power

Our claims regarding efficiency rest on the performance of the system on actual problems."

In all the domains implemented to date, deductive causal theories have proven useful and A

'The representation provided by SIPE is powerful enough to write domain rules that generate large and ,

inefficient constraints. Therefore it is not possible to prove impressive lower bounds on computation for any

dornain rule a user might write.
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effective. Block-world problems that permit more than one block to be on top of another are

solved in one or two seconds on a Symbolics 3600 using the domain rules presented in this

chapter, providing a scale for our claim of an efficient truth criterion. Though corresponding

data has not been published for other planning systems, we know of no other system that

can solve these problems in a few seconds.

The mobile-robot domain is a much larger problem which shows both the system's heuris-

tic adequacy and the importance of causal theories in the use of the planner. This domain

contains 25 domain rules. 5 of which are causal rules, that operate over four abstraction levels "

on a world description consisting of hundreds of predicates. The planner produces primitive %

plans that provide commands, executable by Flakey, for controlling the robot's motors. This S

low level of abstraction requires the planner to generate hundreds of goal nodes for a plan

- just to generate one plan, not to search through alternatives - yet SIPE takes about

30 seconds to completely formulate such a plan (or 9 seconds for an executable plan if the

planner intermingles planning and execution). This is acceptable performance as the robot,"

requires several seconds to move down the hall.

Causal theories are critical to achieving this level of performance. The node in Figure 6-2

is from a robot-world plan for delivering an object to an agent: in this case, a bagel to Leslie.

The prominence of the causal theory in the planning process is indicated by the fact that
If

73% of the CPU time spent on this problem was spent on deducing effects. The only effects

listed in operators for this action of going through a door are that Flakqy is now at LocllI

and in Leslie's office. All of the following effects were deduced from domain rules (described

in the order they appear): the rye bagel which Flakey is holding is now also at LoclI, Flakey

is now next to some subset of objects, Flakey is not next to any other object, Flakey is not

at any other location, Flakey now occupies an adjacent location to some subset of locations

(the members of which are specified by constraints on the universal variable), Flakey does

not occupy an adjacent location to any other location, the bagel is not at any other location,

the bagel occupies an adjacent location to some subset of locations, the bagel is no longer

adjacent to Loci1, the bagel is in Leslie's office, and neither Flakey nor the bagel is in tile
hallway anymore.

It is hard to make efficiency comparisons, as it appears no domain-independent Al plan-

ning systems have been tried on a problem of similar complexity, in most cases because such a
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Process: P6948

Action: Go-Thru-I)oor; 0
Effects: (At Flakey Locll),(Inroom Flakey Leslie-Office);
Purpose: (Deliverl Leslie Rye-Bagel Flakey);

Deduce: (At Rye-Bagel Locl), 6

(Nextto Flakey Object2-n6797) n6797 universal,
-'(Nextto Flakey Object2-n6802) n6802 universal, S

-,(At Flakey Location2-n6782) n6782 universal,

(Adjacent-Loc Flakey Location3-n6788) n6788 universal,
-i(Adjacent-Loc Flakey Location4-n6790) n6790 universal,
-I(At Rye-Bagel Location2-n6816) n6816 universal,

(Adjacent-Loc Rye-Bagel Location3-n6822) n6822 universal,
-n(Adjacent-Loc Rye-Bagel Loc11),
(Inroom Rye-Bagel Leslie-Office),

-(Inroom Flakey Jhall), -'(Inroom Rye-Bagel Jhall);

Figure 6.2: Node in Robot Plan

problem cannot be effectively handled. Certainly, previous classical )lanners could not have

encoded this domain because of the exponentially large number of operators required when

there is no deductive causal theory. Unfortunately, research on more expressive non-STRIPS

assumption planners rarely provides data on )erformance. Indeed, the planners are often

never implemented, and our experience shows that implemented planners can take minutes %

to hours to solve even simple problems. Planners that use frame axioms or circumscription,

instead of the STRIPS assumption, to solve the frame problem are faced with combinatorial

problems and currently have no hope of producing a plan of this complexity in a matter of

seconds. We know of no planning system that approaches the speed of SIPE on a problem "-

as complex as this.

Causal theories are also crucial to the expressive power of SIPE. As we have seen, they ." 4

permit representation of the robot domain by avoiding the exponential number of operators

needed by classical planners without causal theories. By expressilig knowledge of causality ,,,.

independently of the operators, operators become transparent, mu !ar, and simpler. The

power of domain rules is determined by the types of formulas that can appear in their con-

ditions, preconditions, triggers, and effects. SIPE is capable of expressing more powerful

formulas than other classical planners because of its constraints, quantified variables, and

S
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ability to access different world states.

Of course, all the limitations mentioned in Chapter 2 are still present. Approaches to

reasoning about action that use unrestricted logics, e.g., general frame axioms [21] and cir-

cumscription [20], provide significantly greater expressiveness than SIPE. However, they suffer

from inherent computational difficulties, the need to write many axioms with all the details

right, and possibly other problems such as unintended models [11] or the computation of

all possible effects an action might have. With an expressive logic there is generally a need

to specify axioms to deduce that all things not mentioned have stayed the same, unless the

STRIPS assumption or something similar is employed. The user must, of course, implement

an adequate causal theory in SIPE, but this should in general be easier to do that writing

all the axioms required by one of the above systems. While the above formal systems lend

themselves to rigorous analysis and hold promise, SIPE's approach has many computational

advantages over them. To those who want to solve actual planning problems, the existence

of an efficient implementation is important. S
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Chapter 7
a.

Hierarchical Planning as Differing

Abstraction Levels
$

It is generally recognized that planning in realistic domains requires planning at different 1,v-

els of abstraction [14], This allows the planner to manipulate a simpler, but computationallv

tractable, theory of its world. The combinatorics of concatenating the most detailed possit)le

descriptions of actions would be overwhe]ming without the use of more abstract concepts. S

This has resulted in numerous hierarchical )lanning systems. However, hierarchical levels
and hierarchical planning mean quite different things in different planning systems.

In our view, the essence of hierarchical planning (and a necessary defining condition) is I%

the use of different levels of abstraction both in the planning process and in the description of

the domain. An abstraction levelis distinguished by the granularity (14], or fineness of detail,

of the discriminations it makes in the world.' From a somewhat more formal standpoint,

a more abstract description (in whatever formalism is being used) will have a larger set of

possible world states that satisfy it. When less abstract descriptions are added, the size of

this satisfying set diminishes as things in the world are discriminated in increasingly finer

detail. In complex worlds, these abstract descriptions can often be idealizations. This means

that a plan realizable at an abstract level may not be realizable in a, finer grain (i.e.. the

satisfying set might reduce to the null set). For example, one might ignore friction in ain

'Some authors use abstraction to refer to any lack of detail in a plan, even if the granularity remains

unchanged, e.g., the omission of some ordering (:onstraints from a plan.
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abstraction of the domain, but find that the abstract plan cannot. be achieved at the lower

abstraction level when the effects of friction are included in the world descri)tion. 10
I

To see how hierarchical planning can help avoid the combinatorial explosion involve(d

in reasoning about l)rimitive actions, consider planning to build a house. At the highest -

abstraction level might be such steps as site preparation and foundation laying. The planner

can plan sequences of these steps without considering the detailed actions of hammering i

nail or opening a bag of cement. Each of these steps can be expande(ld into more detailed

actions, finally getting down to the level of nail-driving, but with the abstract plan eliminating

all but a few of the possible nail-drivings at each point where the plan could drive a nail.

Hierarchical abstraction levels provide the structure necessary for generating complex plans

at the primitive level.

7.1 The Many Guises of Hierarchical Planning

The planning literature has used the term "hierarchical planning" not only to describe levels of

abstraction, but also to describe systems containing various hierarchical structures or search

spaces, metalevels, and what we will call planning levels. Examples of each of these are given

below. Planning levels are of particular importance because confusing them with abstraction

levels causes a problem in various implementations of hierarchical planning, particularly in

classical Al planners (see below).

Many planners produce hierarchical structures (e.g., subgoal structures) during the plan-

ning process or explore hierarchically structured search spaces. Generally having nothing to

do with abstraction levels, they occur even in nonhierarchical (by our definition) planners

that allow only one level of abstraction. STRIPS, while nonhierarchical, could be regarded as

producing plans with a hierarchical structure, e.g., its triangle tables. The Hlayes-loths [13]

use the term hierarchical to refer to a top-down search of the space of possible plans where

more abstract plans are at the top of this search space. This involves a hierarchical search

space that contains abstraction levels, but the levels in the hierarchy are not defined by these

abstraction levels.

Hierarchical planning is also used to refer to metaplanning. Rleasoning at a nietalevel

involves reasoning about the planning process itself. This is an entirely different domain,
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not merely an abstraction or idealization of the original domain. Stefik [291 states that

.. layers of control (termed planning spaces) . are used to model hierarchical planning in

MOLGEN". In this case, the three planning spaces are being use(d to implement rnetaplanning
and, respectively, represent knowledge about strategy, plans and genetics; the first two are

not abstractions of the genetics domain. (MOLGEN (los provide for planning at different V

levels of abstraction through its constraints.)

The above uses of the term "hierarchical planning" (,scril)e processes or structures un-

related to the use of abstraction levels. Therefore, any confusion generated is terminological -'

and is not an indication of possible conceptual problems within the planning system itself. %

Planning levels, on the other hand, have been confused with abstraction levels - which, as we 0

shall see, can lead to problems within the planner, particularly if the planner incorporates

the STRIPS assumption [34]. Planning levels are artifacts of particular planning systems

and may vary considerably from planner to planner. They are iot defined by a different

level of abstraction in the descriptions being manipulated. but rat her by some process iii the

planning system. Most planning systems have some central iterative loop that performns some

computation on the plan during each iteration. This may involve applying scheinas, axioms,

or operators to each element of the existing i)lan to produce a more detailed plan. To the

extent that such an iteration takes one well-defined plan and produces another well-defined

plan, we will call it a planning level. Planning levels may correspond, in some systems, ex-

actly to the hierarchical structures discussed earlier, but this is coincidence. They are defined

by the planning process, not data structures, and may or may not correspond to hierarchical

data structures within a particular system. The term is admittedly vague but in classical Al

planning systems, and many others as well, it has a precise definition.

All classical Al planners have distinct and well-defined planning levels. In these systems,

a new planning level is created by expanding each node inI the plai with one of the operators

that describe actions. In the literature these levels are often referred to as hierarchical,

which implicitly associates them with abstraction levels. In fact, they are independent of

abstraction level; a new planning level may or may not result in a new abstraction level,

depending upon which operators are applied. For example, in the blocks world (ldscril)(d by

Sacerdoti [27], there is only one abstraction level. ('lvariop and O(n are lhe uny predicates

and each new l)lanning level simply further specifies a plan involving these predicates. Thus,

all the hierarchical levels in the NOAII blocks world are actually llanninig levels, lhat result

V
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in adding further detail to the plan at the same abstraction level. Others have described such

an omission of detail as an "abstraction", but we specifically require an abstraction level to

involve different predicates with different grain-sizes.

Planning systems not in the classic tradition also have planning levels. Rosenschein's

planning algorithm, using dynamic logic [24], attempts to satisfy a set of planning con-

straints. Running his "bigression algorithm" on each constraint in the set (which he claims is

a straightforward extension of his system) would constitute a planning level. Agenda-based

planning systems also have natural planning levels that are defined by the execution of one

agenda item. These planning levels would be somewhat different from the others we have

discussed, as they might not involve performing some operation on each element of a complete S

plan. Consequently, they are not likely to be confused with abstraction levels. V

7.2 A Problem with Current Planners

There is a problem that can arise when planning and abstraction levels are interleaved in

a planner making the STRIPS assumption, as they are in classical planning systems. This

problem exists in many NOAII-tradition planners but has never been documented.

In such a planner, one element of the plan can attain a lower abstraction level than another .r.

element at the same planning level, depending upon which operators are applied. Thus, the

plan at the current planning level could be P1;Q1;G, where P1 is an action making the

predicate P true, Q1 an action making the more abstract predicate Q true, and G a goal

that depends upon the truth of P for its achievement. (We use the symbol ; to denote

sequencing of actions.) With the STRIPS assumption, the planning system will find that P

is true at G, since Q1 does not mention changes involving any less abstract predicates (such

as P). In fact, the truth of P may depend upon how Q1 is expanded to the lower abstraction 5

level, since it may or may not negate the truth of P. Thus, conditions may be evaluated %

improperly in these planners, resulting in incorrect operator applications.

For these planners to correctly apply their truth criterion at time N in the plan, they must

ensure either that all relevant information at the proper abstraction level is available for the

actions preceding N, or that subsequent expansions to lower abstraction levels will not change

the truth value of the query. Hlowever, many existing planners (e.g., NOAII and SIPE) do
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not provide this assurance. We might say such planners exhibit hierarchical promiscuity, but

there are good reasons for being promiscuous. Various solutions to the above problem are

discussed below, but the most straightforward one is to impose a depth-first, left-to-right

planning order that is sensitive to change in abstraction level. This is the approach taken iy by1

ABSTRIPS [26]. This means that, when a condition with predicates of abstraction level N4

is checked at time N in the plan, all possibly relevant information at abstraction level NI or

higher will be available for every plan element occurring prior to N.

However, this is not always desirable since many advantages can be gained by l)lanning

certain parts of the plan expedientially (or opportunistically) to lower abstraction levels. For

example, in planning a trip from Palo Alto to New York City, it might be best to plan the

details of the stay in New York first, as this could determine which airport would be best to

fly into, which in turn could determine which Bay Area airport would be the best departure

point. Thus, we do not want to restrict ourselves to depth-first, left-to-right planning, which

would require choosing the Bay Area airport before the one in New York.

While the foregoing problem will be discussed in this paper in our terminology of "oper-

ators" and "goals", it applies equally well to any planner that must coordinate deductions

over different abstraction levels. For example, Rosenschein's hierarchical )lanner based on

dynamic logic [24] must address this issue in order to produce correct plans. The definition of 'r

this problem will be made more concrete by looking at it in the indoor mobile-robot (lonlain. .'-..

0-.,

7.2.1 Abstraction Levels in the Robot Domain

It was the encoding of the mobile-robot domain in SIPE that revealed the problem of coor-

dinating abstraction levels. In our encoding of this domain, the most abstract level of the .'

planning process reasons about the tasks that can be performed, such as )reparing a report

or delivering an object. Our simple domain requires only one level for this, but more complex

tasks might require several abstraction levels to describe them. The first level below the task

level (referred to as the Inroom level since Inroom is the crucial predicate) is the planning

of navigation from room to room. This plans a route that may require many l)lanning levels

for all the necessary operators to be applied, but it does not involve any reasoniing about

)articular doors or locations. High-level predicates describing connections indicate that it is

reasonable to move from one room to another, but without first considering any details as to
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IPlanninig

TOPOA L level:

00

Inroom Inroom Inroom 1

0,

At Inroom Inroom (At L7) 2

/\V

(At Li) Inroom Inroom Iniroom3

Figure 7.1: HPierarchical Plan in Robot Domain

how this might be done or whether it might even be possible in the current situation. When

such a move is planned to a lower abstraction level, it may fail or many actions may have to-

be performed to clear a path.

Below the room level is the Nextto level, which plans movements from one important.0_

object (that the robot is next to) to another. For example, to copy a paper, the robot will .

have to get next to the door of the copy center, then pass through the doorway, then get next " .-

to the desk of the operator, etc. This abstraction level plans high-level movements within a '

room but is still not concerned with actual locations - Netto is the crucial predicate.,

The lowest level is the ocati level er SIPE plans movements down to the level ofn
the actual locationalgrid it has beensgiven. Thismay involve planning tomoveobstacles so

as to clear particular paths. At is the crucial predicate at this abstraction level. pln

9_
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7.2.2 Coordinating Abstraction Levels

The problem of coordinating abstraction and planning levels arose in the plan depicted in

Figure 7-1. The initial goal produced three Inroom goals at the first planning level. Of

these three subtrees, the first and last were transformed into the lowest abstraction level at

planning level 2 (intervening Nextto goals have been disregarded for the sake of simplicity).

The middle subtree, however, is still at the room abstraction level on planning level 3, as

it required several operator applications to find a path through the rooms to accomplish its

goal. This hierarchical promiscuity leads to trouble.

Now, when the planner applies an operator to the (At L7) goal at planning level 2, any

precondition that queries the At predicate will find (At Li) to be valid, since that is the

last place at which At is affected and the STRIPS assumption assumes all actions leave

predicates unchanged unless they explicitly specify otherwise. But this is not correct, as At

may be affected after the middle subtree is expanded to the lowest abstraction level. If the 

operator depends critically on the value of the At predicate, its application to (At L7) may

be incorrect. The resulting plan will have commands that move the robot from location Li to

location L7, whereas the robot is not likely to be at Li when this part of the plan is executed

(because of movements made in the middle subtree). Whether such an operator application

will prevent the correct plan from being found depends on how a particular planner detects

invalid plans and how the search space is organized.

7.3 Solutions

There are many alternative solutions to this problem. They range from calculating all possibly

relevant information before it may be needed to ignoring the problem alt, get her and simply

letting the user beware of the consequences. The former, and most straightforward, is to force

the planner to plan in temporal order and to provide for calculation of all the predicates at

one abstraction level that may be needed later. Many planners do this, though it is usually

not made clear that they depend on several assumptions to avoid subtle problems such as

this one. ABSTRIPS [26] is an example of planners that use this approach. It assigns

abstraction-level numbers to the predicates and plans a lower level only when all necessary

computations have been made. SIPE provides, as a user-selectable option, the ability to
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control hierarchical planning in this manner. This is useful for performance comparisons

with the different techniques described below.

The problem with this approach is that the planner is limited in the order in which it

can process goals. Quite often the order imposed will not be optimal (as in the Palo Alto-to-

New York example). The flexibility to plan certain parts of the plan expedientially to lower

abstraction levels is lost. Constraints generated during such lower-level planning can narrow

down the search, thus resulting in potentially large gains in efficiency. For these reasons,

planners like SIPE, NOAH, and NONLIN allow the mixing of planning and abstraction

levels.

The approach used in these latter planners is susceptible to the level coordination problem

and therefore requires the user to be alert. Incorrect checking of conditions similar to the

one described can occur in these systems, depending on the task and the encoding of the

operators. This can result in incorrect operator applications. The planning system may

have mechanisms that later detect the plan is incorrect, as SIPE and perhaps NONLIN do.

However, the proper solution may not be found if the operator applied incorrectly is the one

actually needed for the correct solution, since it may not be retried. Its premature application

should have been delayed one or more planning levels so that other parts of the plan could

be planned to a lower abstraction level. The user is responsible for writing operators that

will accomplish this delay. This process is facilitated by certain features of SIPE, as we shall

see.

It is appealing to look for a technique between the inefficiency of computing everything in

a certain order, and the expediential behavior of systems that perhaps miss valid solutions.

This would involve reasoning about what properties will remain invariant during further

planning of certain goals. For example, in Figure 1 the planner might calculate whether the

possible expansions of the middle subtree will affect the value of the At predicate. If not,

planning can proceed expedientially. This is all the more appealing because reasoning about

concurrency depends on determining invariant properties of a sequence of actions.

Despite the attraction of this approach, there are severe difficulties entailed in comput-

ing these invariances. It would be best if they could be computed automatically from the

operators without requiring the user to supply additional knowledge. (The STRIPS as-

sumption effectively makes this computation for predicates at one abstraction level, but the
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computation must be done for predicates at other abstraction levels.) In general, this is

not computationally tractable. It is similar to the problem of regressing conditions through

actions ([24],[34]), except that the regression must be done through every possible expansion

of the actions for an indeterminate number of planning levels. Furthermore, simple schemes

that simply check for predicate names that may possibly be changed will probably find very

few invariances. For example, in the robot domain, every high-level goal will alter the values

of At predicates at the lowest level. More sophisticated schemes that check possible values

for the arguments of the predicates, perhaps determining ranges of values they might acquire

in all possible expansions, would themselves require solving a large search problem.

An alternative is to have the user provide information about what remains invariant over

actions. While this may be useful for some domains, in general the same criticisms made

above apply to this case. There will in general not be many things (at lower abstraction lev-

els) that are invariant; moreover, it may even be difficult to indicate explicitly what they are,

as the invariance may involve complex constraints on the allowable arguments to predicates.

In addition, one of the chief advantages of abstraction levels is that specifying details is un-

necessary at higher levels. Computing invariants would require information as to which lower

levels are affected in what way by each higher-level goal, thus removing some of the advantage

gained by not planning at the lowest level from the very beginning. The computational costs

of this can quickly become overwhelming as we shall see.

7.3.1 Delaying Operator Applications in SIPE

For reasons given above, SIPE is hierarchically promiscuous and gives the user the burden of

encoding the domain in such a way that incorrect evaluation of conditions will not produce

applications of operators that prevent solutions from being found. We have solved this

problem within SIPE for the robot domain in two different ways (in addition to the option

of using the ABSTRIPS solution). One solution involves delaying the application of certain

operators and the other solution involves the introduction of certain less abstract predicates

at earlier planning levels.

The first solution involves a novel use of operators, developed during implementation of

the robot domain, that effectively delays the achievement of certain goals until the appro-

priate juncture, as long as the latter can be ascertained by conditions that are expressible
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Operator: Not-yet

Arguments: robot I ,location2,areal,locationi;
Purpose: (At robot1 location2);
Precondition: (At robot1 locationl),

(Inroom robotl areal),

-,(Contains location1 areal);

Plot: COPY

End Plot End Operator 
%

Figure 7.2: Operator for Delaying Operator Application P.

as preconditions of a SIPE operator. This is best shown by returning to the robot domain

example.

In the SIPE robot domain, only the planning of At goals is affected when abstraction

levels vary in the plan. Figure 7-1 depicts the type of situation in which the accomplishment

of an At goal must be delayed. This is (lone by using the operator shown in Figure 7-2. It

delays the solving of At goals until the part of the plan preceding them has been brought to

the same level of abstraction. This is done by checking whether the At location of the robot

is in the same room as its Inroom location. If the precondition of this operator matches,

it means that the last At predicate specified as an effect of an action came before the last
Inroom predicate specified as an effect. Consequently, the latter action must still be planned

to the lower level of abstraction. 2

This operator is applied before any other to an At goal. The plot of Not-yet is simply

the token Copy that copies the goal from the preceding planning level. It is necessary

to use a special token rather than specify the At goal in normal syntax. Normally SIPE

inserts the precondition of an operator into the plan and maintains its truth. In this case the

precondition will not be true in the final plan, so the copy option inserts the appropriate goal

without first inserting the precondition. With this feature and the above operator, SllE can

mix abstraction and planning levels freely in the robot domain without missing a solution

on our test problems. However, there may be problems in the (, ur.ain that cannot be solved

without creating additional delaying operators.

2 Of course, this operator could still be fooled if you planned a circular route that ended in an Inrooo goal

for the same room that contained the last preceding At location. However, this would cause a problem only
if the eventual location reached in the expansion of the Inroom goal were different from the one in the earlier
At goal. T]his situation never arises in our domain.
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7.3.2 Introducing Low-Level Predicates

Instead of using the Not-yet operator, the second solution involves introducing lower-level 0

predicates at higher abstraction levels so that the truth criterion will still be correct. In this

case, we add a lower-level At predicate (which includes an uninstantiated locational variable)

to every higher-level Nextto goal as a placeholder for the predicate that would be produced

during some future expansion. When the Nextto goal is expanded to the lower level, the

location actually reached will eventually become the instantiation of the locational variable

introduced. At the planning level of the Nextto goal, any At predicate in a condition being

tested will match with the newly inserted At predicate, preventing the planner's incorrect

assumption that the Nextto goal does not affect the truth-value of the condition.

This solution takes advantage of SIPE's ability to post constraints on variables. The newly

introduced At predicates effectively document the fact that the At location may eventually

change during any expansion of the Nextto goal (even though the location is not yet known).

Before and during such an expansion, the location variables can accumulate constraints oil

their possible values, so the planning process will not be hindered. The matching of conditions

will always be correct because these At predicates are present everywhere the At location

might change. 0

Incorporating this change into the SIPE operators written for the first solution was easy.

Only three of the 25 operators posted Nextto goals, so only those three had to be changed.

The process of converting these three operators is illustrated by contrasting the original Fetch

operator, described in Chapter 3 and shown in Figure 7-3, with the Fetch operator including

At predicates, shown in Figure 7-4. In the plot, each goal node and process node with a

Nextto predicate in its effects is given an additional effect that is an At predicate involving a

new locational variable. The latter is included in the arguments of the goal or process so as

to permit appropriate matching with the variables in the operators that solve Nextto goals.

The locational variable is ;,dded to the arguments of the operator, whose precondition can

also specify any predicate that constrains the variable. In particular, the variable should be

constrained by its containing room.

Once the three operators were converted in this manner, SIPE was able to solve all the

problems in our test domain. This solution appears robust and should not prevent the planner

from succossfully dealing with any problems it might solve by means of an AHSTR l{IPS-like

0
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Operator: Fetch

Arguments: robot 1 ,object 1 ,rooin 1;

Purpose: (Holding roboti objecti);

Precondition: (Inroom objectl room 1);

Plot:

Goal: (Inroom robotl roomi);

Protect-until: ( llolding robotl objectl);

Goal: (Nextto robotl objectl);

Process

Action: Pickup; 0
Arguments: robot1, objecti;

Effects: (Holding robotl objectl);

End Plot End Operator

Figure 7.3: Original Fetch Operator S

Operator: Fetch

Arguments: robot 1,object 1,areal ,location 1;
Purpose: (Holding robotl object 1);
Precondition: (Inroom object1 areal), ,

(Contains location! areal);

Plot:

Goal: (inroom roboti areal);

Protect-until: (Holding robotl object 1); ...r
Goal: (Nextto robotl objectl);

Arguments: robot1, object], areal, location]; S

Effects: (At robotl locationl);

Process
Action: Pickup;

Arguments: robot 1, object 1;

Effects: (holding robotl objectl); •

End Plot End Operator

Figure 7.4: Fetch Operator with At Predicate
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Problem: Not-yet introduce At ABSTRIPS

Original 29.5 (7) 54.2 (7) 32.1 (11)

Shorter path 24.8 (7) 46.7 (7) 25.1 (8)

longer path 43.7 (7) 57.4 (7) 35.7 (10)

Figure 7.5: Symbolics 3600 CPU time and planning levels for solutions

approach. Characteristics of the domain are again exploited in this solution. By having
to plan about less abstract entities at a more abstract level, we are giving up some of the A

advantage gained by planning hierarchically. However, it is reasonable in this case because we

need introduce only one lower level predicate early (albeit the most important one), and wve

need introduce it only a single abstraction level early. There is no difficulty in coordinating

any other pair of abstraction levels in this domain. However, the introduction of mor -

variables and constraints significantly increases the effort required. Using this techniquo to

solve problems in the robot domain takes from one-third again to twice as long as using the

Not-yet operator (see next section).

7.3.3 Comparison of Solutions

The two techniques described above were tested on three different problems in the robot 6%vl"

domain. The ABSTRIPS control regime was also used to solve these problems. (This in- S

volves using the same operators as were used while delaying operator application except

that the Not-yet operator is eliminated.) The original robot problem involves a choice of

different paths and entails seven planning levels for producing a primitive plan with 5S8 pro- %

cess/phantom nodes. The other two problems are similar, but one requires a shorter path to

be found and the other requires a longer path. Figure 7-5 depicts the cpu time and number,%

of planning levels required for each problem. It is to be expected that the ABSTRIPS control

regime is as efficient as delaying operator application since these particular problems do not

admit to simpler solution by planning later parts of the plan to a lower abstraction level. For 0

problems and domains with this property, ABSTRIPS-like coordination of levels is preforred

since it is both efficient and correct. (It does, of course, require more planning levels.)

The Not-yet solution accomplishes the delayed application of el)orators when ntessarv,
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but permits expediential planning in other cases. This retains flexibility while renlaining

efficient by not regressing conditions through possible expansions of actions. As no lower-

level predicates are introduced early, full advantage is taken of hierarchical planning. The

disadvantages of this approach are that the user (though relieved of the necessity of specifying

invariance properties for higher-level goals) must write appropriate delaying operators and,

furthermore, must have anticipated all possible situations in which operators would need

to be delayed. In complex worlds this means that novel problems might not be solved. ]n

addition, it may not always be possible to express the appropriate delaying conditions as a

SIPE precondition. In an application in which efficiency is of paramount importance and

failure to solve a particular problem can be tolerated, this may be a desirable approach. 0

Introducing At predicates is more robust and less likely to fail on novel problems. It was

surprisingly easy to implement in SIPE. However, when low-level predicates are introduced

at a higher abstraction level, it is significantly less efficient. The advantages of hierarchical

planning can be readily seen, as the introduction of only one predicate (albeit the crucial .

one) at the next higher abstraction level nearly doubles the cost of computation.

0..,
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Chapter 8

Search

Development of SIPE has not addressed the issue of intelligent control of the search process,

in part because searching algorithms and heuristics will need to be domain-dependent. For

example, consider the advice "use existing objects", a fairly domain-independent concept

that is used by Sacerdoti in NOAH [27] and mentioned by Wilensky [35] as a metagoal for .,.

metaplanning. However, this idea still involves domain knowledge. In the house-building

domain, it is desirable to use the same piece of lumber both to support the roof and the

sheetrock on the walls. But in another domain, this may not be a good strategy. On the

space shuttle, one might want different functions to be performed by different objects so

the plan will be more robust and less vulnerable to the failure of any one object. So the

"use existing objects" idea makes assumptions about the domain that need to be stated. In

general, because all search strategies rely on certain properties of a search space in order to

function well, no one strategy can be selected for a domain-independent system.

For this reason, SIPE provides only a simple automatic search strategy, but has built

the system on basic mechanisms (primarily contexts) that facilitate the ability of users to

encode their own search strategies. The system's automatic search is a straightforward depth-

first search with chronological backtracking, that provides for the interleaving of planning

and execution. However, the representation is powerful enough to encode search-control

knowledge within operators (see Chapter 3). Unlike its predecessors, SIPE is designed to

also allow interaction with users throughout the planning and plan execution processes. The

user is able to watch and, when he wishes, guide and/or control the planning process. This is

useful for debugging, and allows users to address larger problems that may initially be beyond
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the capabilities of fully automatic planning techniques. Development of an interactive planner

also encourages us to deal with the issue of representing the planning problem in terms that

can be easily communicated to a user. While work on SIPE has raised issues in human-

machine interaction, we will discuss only the planning aspects of this effort.

8.1 Automatic Search

Although SIPE manipulates its representations efficiently, its straightforward depth-first

search with chronological backtracking will obviously not perform well on large, complex

problems. The poor performance of automatic search is not debilitating for two reasons: the,

system has been designed and built to support interactive planning, and the operators are

powerful enough to express metaknowledge that can be used to effectively control the search

by correctly narrowing the set of applicable operators.

The only backtracking points are alternative operators that could have been applied. In

other systems, backtracking points are also generated by alternative ordering constraints and

alternative variable instantiations. SIPE uses its ability to post constraints on variables to

avoid instantiating a variable unless the instantiation is forced. Constraints allow the system

to accumulate knowledge about the instantiation without committing to it. Nevertheless,

instantiation choices still appear in two places. During application of domain rules to deduce

effects of actions, it may be possible to apply a rule by making an instantiation. Chapter 6

describes the heuristic (based on class constraints) that SIPE uses in this case.

It may also be possible to accomplish a goal by making an instantiation instead of applying

an operator. By default, SIPE remains true to its least-commitment philosophy by refusing

to instantiate in this situation, but Chapter 9 describes options the user can select that

will allow the goal phantomization critic to make instantiations when they are not forced.

We are satisfied with the heuristic solution for avoiding choice points in deduction - the

combinatorics of that problem demand some such heuristic. However, it may be desirable to

allow choice points for the solving of goals by instantiation in domains where the problem 4.

can still be kept tractable.

The addition of ordering constraints is also not backtracked over, except that at the time

the constraints are added, SIPE applies problem recognizers from the replanner (see Chapter

"2
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11) and immediately rejects the proposed ordering if serious problems are introduced (thus

permitting alternative orderings to be tried). Again, it may be desirable to allow choice

points for alternative orderings in domains where the problem can still be kept tractable.

SIPE generally adds ordering constraints only when they are forced, but Chapter 9 describes

options the user can select that will allow the goal phantomization critic to add ordering

constraints when they are not forced.

The search is responsible for balancing time spent checking critics and the global con-
"'

straint network with time spent planning. This balance is an open and important question,

and the desired result is domain dependent. In a domain where global constraints are fre-,,'

quently violated, it may be best to check them after every operator application. If, on the

other hand, global constraints are almost never violated, it may be best to check them only

after a complete plan at the primitive level is produced. While either of these extremes can be

achieved through interactive control of the system, SIPE's search implements a compromise.

The global constraint satisfaction routine is called once per planning level (i.e., after one level

of expansion is done to every node in the plan). This can be easily changed in domains where

better performance might be achieved by investing this effort more or less often.

The search directs several operations at each planning level, and the order of these op---

erations can be important to overall system performance. The search begins by trying to

phantomize any goal in the original problem. At each planning level, it applies an operator

to each open node (i.e., each nonprimitive goal, process, or choiceprocess node), copying down

any other nodes (e.g., precondition nodes, primitive nodes), to produce a plan at the next

planning level. The deduced effects of the nodes copied down are recalculated, since they
may change in the different context specified by the more detailed plan. The search checks for

problems this may cause, and may change phantom nodes back to goals, as well as rejecting

operator applications that falsify preconditions already present in the remainder of the plan.

The latter is an important pruning of the search space - it means that some operator already

applied should not have been, so that a later search of alternatives will eventually produce

a correct plan that includes the operator application currently being rejected (if such a plan

exists). The critics (see Chapter 9) are then called on the new detailed plan. They make

sure the global constraint network can be satisfied, then try to phantomize goal nodes, then

check for resource conflicts, and finally check for problematic parallel interactions. Both of

the last two operations may add ordering constraints to fix conflicts or problems. The last
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operation may also insert appropriate goal nodes if parallel postconditions on join nodes are

violated. S.,
The ordering of the above operations can be important. Phantomization should be at-

tempted before the operations that follow it, since the problem may be simplified. In general,

one wants to solve the global constraint network first, since this often forces instantiations of

variables which may simplify everything. However, phantomizing goals may also instantiate

variables, after which one might want to c.Leck the global constraints again in case they force

further instantiation. One could imagine applying these two operations repeatedly until one

of them did not force an instantiation. In applications of SIPE, this situation has not come

up, so the search merely calls each of these operations once, except in the case where a final

[primitive] plan is produced - in which case the constraints must be rechecked to assure that

the plan is still valid after phantomizations.

Chapter 9 describes these plan critics in detail and presents an example of the automatic

search solving a problem, showing the ordering and frequency of these operations.

8.2 Intermingling Planning and Execution

The search also has the ability to interleave planning and execution. This will be described

in detail since other classical planners do not have this ability, as critics frequently point out.

Classical planners have historically planned every step of each plan to the lowest level of

detail - this is the reason plans in the mobile robot domain for retrieving objects take about

30 seconds to generate. Such detailed planning can often be undesirable [8], since it prevents

the planner from reacting quickly to events. Furthermore, as actions are planned further into

the future, it becomes less likely that they will be useful. The probability increases that some

unexpected event will render the remainder of the plan unsatisfactory.

Fortunately, there is no inherent reason that classical planners have to plan everything to

the lowest level of detail, so SIPE permits intermingling planning and execution. The operator

description language allows users to encode domain-specific information about which goals

and actions can have their planning delayed. The user can simply include the word "DELAY"

in the description of a node in the plot of an operator. The search will then not plan any

such goal or action until a plan suitable for execution has been generated. The planning of
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the delayed goals is started as a background job as soon as the original plan is ready for

execution. 0

The original plan is used by the execution monitor until either an unexpected event hap-

pens or the goals whose planning has been delayed are reached. In both cases, the plan

produced by the delayed planning process is retrieved (possibiy waiting for the process to fin-

ish) and updated with information about nodes that have already been executed. Execution

proceeds on this updated plan while another background job continues to plan any delayed

goals in this new plan. When SIPE attempts to retrieve the results of the delayed planning

process, it may notice that the delayed planning fails, in which case the system tries again

to solve the original problem in whatever state the world is currently in.

The encoding of domain-dependent knowledge for this purpose is effective because such

knowledge is generally available. For example, in the robot domain, the robot can obviously

begin executing its plan to get to the object to be picked up before planning how to deliver S

the object after picking it up (assuming the robot does not make hallways impassable as it

travels down them). Thus, the operator for fetching and delivering an object should have
a delay put on its second goal. Goals should not be marked for delayed planning unless

there is a high probability that they can be achieved, or it is known that their solution is

independent of the solutions chosen for prior goals. The planner can begin execution with

some assurance that its initial plan should be the beginning of a valid solution for the whole

problem. Domain-independent criteria for delaying planning, e.g., delaying planning after a

certain number of actions have been planned, would be arbitrary and would not be able to

provide this assurance.

The delay described above (on the deliver goal following the fetch) is the only one in-

troduced into the operators used to solve problems in the robot domain. With this minor

addition, SIPE produces a plan for the same problem that is ready for execution in only

9 seconds (rather than 35). The remainder of the plan is usually ready in complete detail

before the robot travels very far down its first hallway. This enables SIPE to react much more

quickly to situations, and reduces the time spent waiting on the l)lanner. It is also easy to

envision more options than simply planning delayed goals in a background job. On the basis '5'

of domain-dependent knowledge, these goals could alternatively be planned immediately or

left unplanned until execution reaches that point in the plan.
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8.3 Interactive Control

The user can control the search interactively, taking advantage of SRI's Graphical Interface

to view the partial plans produced as graphs. This ability is quite useful, since the system

can be guided through problems that would not be solved in a reasonable amount of time

with the automatic search. It is also very useful for debugging purposes.

Control is accomplished through self-explanatory menus that allow the user to invoke

planning operations at any level without being required to make tedious choices that could

be performed automatically. The user can direct low-level and specific planning operations

(e.g., "instantiate planel to N2636G", "expand Node32 with the Fetch operator"), high-

level operations that combine these lower-level ones (e.g., "expand the whole plan one more

level and correct any problems"), or operations at any level between the two (e.g., "assign

resources", "expand Node32 with any operator", "find and correct harmful interactions"). If

the user chooses to control the planning at the lowest level, then he must call the plan critics •

appropriately to assure than the plans being produced are valid. Through use of the context

mechanism, the user can instantly change his attention to different alternative plans.

8.4 Domain-Dependent Search Control

Since we view domain-dependent search control as necessary in complex domains, SIPE

provides for its realization in several ways. This chapter has described several ways that

properties of the domain can be used to control the automatic search and the interleaving

of planning and execution. Chapter 3 described ways in which operators can express meta-

knowledge that can be used to control the search. There are other ways in which the user

can take advantage of the system's representational power to encode search control knowl- •

edge. The whole purpose of abstraction levels is to control the search, and powerful abstract

operators can be written. In addition, nodes can be given extra arguments that are variables

with constraints. These variables serve no purpose other than to unify with arguments of

operators, which means operators used to expand such a node must satisfy the constraints

posted on this extra argument. In this way, knowledge encoded in constraints can be used

to control which operators are applied.

However, the primary feature of SIPE which allows sophisticated search control strategies
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to be implemented is the ability to explore alternative plans in parallel. Other domain-

independent planners have not provided this capability, which facilitates implementation of

various search strategies, including best-first. This is implemented by the contexts and choice

points described in Chapter 3. Constraints on variables are posted relative to choice points.

The context is used to select those constraints on a variable that are part of the current

plan. This permits the user to shift focus easily among alternatives, which cannot be done in

systems that use a backtracking algorithm, in which descriptions built up during expansion %

of one alternative are removed during the backtracking process before another alternative is

investigated. Most other planning systems either do not allow alternatives (e.g., NOAH) or

use a backtracking algorithm (e.g., Stefik's MOLGEN, NONLIN). An exception is the system

described by Hayes-Roth et al. [13], in which a blackboard model is used to allow the shifting

of focus among alternatives.

In complex domains, it may be reasonable to build a metaplanning module to control

SIPE in a domain-dependent manner. The types of search control one might implement

using SIPE's context mechanism are unlimited. For example, one can imagine using Stefik's
5,

layered hierarchical approach to metaplanning with SIPE, p.ovided the lowest layer upon 5".

which the design and strategy layers will operate.
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Chapter 9

Plan Critics
I

There is good reason for a planner to temporarily produce plans that are not valid. Allowing %

nonlinear plans (which is necessary for sufficient expressive power) means that plans will

often not be valid until the parallel interactions are analyzed and corrected. It is often not

tractable to check the global constraint satisfaction problem every time a new constraint is

posted. For these reasons, it would not be computationally intractable for a classical planner

to be implemented in such a way that one could prove that every single operation performed

b the planner produces a correct plan. Thus, classical planners employ plan critics which

periodically check the validity of the plans that are produced, and possibly modify them in

response to any problems that are found.

In SIPE, there are several reasons for applying critics in addition to the obvious problem 5

of checking helpful and harmful interactions among possibly parallel actions. As we have seen

in previous chapters, constraints that are globally unsatisfiable may have been posted. Re-

source conflicts may need to be corrected. Some goal nodes may have already been achieved

by planning operations already taken. Plan critics are therefore called to check parallel inter-

actions, phantomize nodes, check resource conflicts, and solve the global constraint network.

These critics may resolve problems they find by applying sohyrrs which modify the plan.

SIPE's solvers may instantiate variables, further order the plan, add new goals to the l)lan, I
change goals (which may be either goal nodes or choiceprocess nodes) to phantoms, and even

remove subplans that are no longer part of an optimal solution. Criti(s must either solve

every problem they find, or fail, which causes the automatic search to backtrack and explore

other alternatives.
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In Chapter 8, we discussed the issues involved in deciding how often to employ critics.

Currently SIPE applies them once per planning level in the automatic search. Through inter-

active control this can be easily changed. In this chapter, we describe the techniques actually

used by the critics to find and solve problems. The solution techniques of instantiating vari-

ables, inserting new goals, and changing goals to phantoms are simple and do not need to be

discussed further. Adding ordering constraints to the plan is the most complicated solution

technique, since it can introduce changes that may affect the remainder of the plan in a dras-

tic manner - resulting in the addition of goals or the removal of subplans. It is described

below, and the last section of this chapter presents examples of the automatic search applying

many of these mechanisms to solve a block-world problem. The system collects all proposed

linearizations and attempts to optimally order them.

Since resource reasoning is an important contribution of SIPE and involves several novel

techniques, it is described in detail in its own chapter (Chapter 10). The other critics,

those for global constraint satisfaction, goal phantomization, and solution of harmful parallel

interactions, are described below. The resource critics described in the next chapter use the

solution technique of adding ordering constraints which is described below.

9.1 Solving the Constraint Network

Global constraint satisfaction in SIPE is not of great interest. It uses a straightforward

depth-first search to find a legal instantiation for each variable such that no constraints are

violated. It actually posts instantiations only if they are forced. If there is no solution, it

simply means that the current branch of the search must be pruned. None of the solvers are

applied in an attempt to make the constraints satisfiable. Chapter 10 (tescrihe: a(litional

checks made by this critic for numerical constraints.

There are some simple heuristics for guiding the search within this critic. The order in

which legal instantiations are found for variables is determined so that optional- not-samie

constraints will be satisfied if it is possible to do so. Constraints t hat are ,asily coimiiilo(i are

* checked first. In particular, pred and not-pred constraints are checked last. l'lle sYste'm also

, saves the last solution it found for the global constraint satisfaction problem. andt at each

point in the search tries first the choice that worked in the previous solution. This techii(Ile

eliminates most searches in the majority of cases. Since this critic is called at each planning
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level, the incremental addition of constraints between calls to the critic generally results in a

network that has a solution that shares many instantiations with the previous solution.

This simple algorithm has resulted in satisfactory performance in the domains currently

implemented. In larger problems, particularly complex scheduling problems, it may be de-

sirable to implement a more sophisticated algorithm. SIPE currently does not relax any of

its constraints - another ability that would be useful in more complex domains.

9.2 Parallel Interactions

A least-commitment philosophy involves not committing to orderings unnecessarily. We will

use the term parallel branches to refer to subplans that are unordered with respect to each

other. Here we define the concept of parallel interaction; the following sections describe two

plan critics that recognize and deal with these interactions. The goal phantomization critic

takes advantage of helpful interactions so as not to produce inefficient plans, and the harmful

interaction critic corrects harmful interactions that keep the plan from accomplishing its

overall goal.

First, we will define helpful and harmful interactions in the context of classical planners.

5' An expected effect is any formula the planner expects to be true within a subplan. In addition

to the effects of actions, this includes any other condition the planner is monitoring and ex-

pecting to be true. For example, in SIPE, expected effects include the effects of precondition, r

phantom, choiceprocess, and goal nodes. If two branches of a plan are in parallel, an interac-

tion is defined to occur when an expected effect in one branch (at any level in the hierarchy)

possibly codesignates with an expected effect in another branch. If the effects agree in sign,

the interaction may be helpful, otherwise it may be harmful. Since the actions in a SIPE

plan explicitly list their expected effects (a feature shared by other classical planners), it is

always possible to recognize such interactions. (In a hierarchical planner, however, they may

not appear until lower hierarchical levels of both branches have been planned.) As we shall

see below, the harmful interaction critic does not consider all effects of actions as expected

effects - side effects are sometimes ignored.

The planner can sometimes take advantage of a situation in which a goal in one branch

is made true in another branch (a helpful interaction). Suppose we solve the standard block-
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world problem of getting A on B on C, starting with A and C on the table and with B on A.

In solving the B-on-C parallel branch, the planner will plan to move B onto C, thus making A

clear and C not clear. Now, when an attempt is made to move A onto B, the goal of making

A clear becomes part of the plan. Since A is not clear in the initial state, the planner may

decide to make it true by moving B from A to the table (after which it will have to move

A onto B). In this case it would be better to recognize the helpful effect of making A clear,

which happens in the parallel branch. Then the planner could decide to get B on C first,

after which both A and B are clear and the (On A B) goal is easily accomplished.

The goal phantomization critic must decide whether or not to take advantage of a helpful

interaction. Ordering the parallel branches sequentially is the best solution in our example

because B must be put on C first in any case, but in other problems an ordering suggested to

take advantage of helpful effects may prevent eventually achieving the overall goal. In addition

to the decision of whether to do the ordering, there are options of choosing instantiations

to take advantage of possibly codesignating helpful interactions. As described in the next

section, SIPE uses heuristics to make such decisions without exploring this search space.

If an interaction is detected that makes an expected effect false in a parallel branch, there

is a problematic (i.e., possibly harmful) interaction, which may mean that the plan is not a

valid solution. The interaction will be harmful only if the effects necessarily codesignate. For

example, suppose the planner does not act upon the helpful interaction in our problem and
proceeds to plan to put B on the table and A on B in the (On A B) branch. The plan is no

longer a valid solution (since B is being moved to both C and the table in parallel branches).

The planner must recognize this by detecting the harmful interaction. Namely, the goal of

having B clear in the B-on-C branch is made false in the A-on-B branch. The planner must

then decide how to rectify this situation. SIPE's approach to this problem is part of the

harmful interaction critic described below.

NOAII and NONLIN detected harmful parallel interactions by constructing a TOME

(table of multiple effects). NOAH ignored helpful interactions, though NONLIN noticed

them. While SIPE's critic for dealing with harmful interactions does a computation similar

to that done in constructing a TOME, there are many enhancements that are described

below.
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9.3 Goal Phantomization

Goal phantomization is the process of "achieving" a goal by having it already be true at the

point in the plan where the goal occurs. This is a trivial process in ground (instantiated) non-

linear plans: either a goal is true or it isn't. However, the introduction of either variables or

nonlinearity complicates the situation, as they provide choices of methods for accomplishing a

goal. The system can choose various instantiations or take advantage of helpful parallel inter-

actions. (Goals in SIPE can be encoded as either choiceprocess nodes or goal nodes, and the

following discussion applies to both.) In general, SIPE remains true to its least-commitment

philosophy by refusing to instantiate variables or add ordering constraints unless it forced to

do so. However, it is often necessary to achieve goals by means of these actions in order to

produce optimal plans. In general, the planner cannot predict the correctness of applying

these actions unless it completely investigates all the consequences of such a decision, which

entails a combinatorial search. Since SIPE does not generate backtracking points for these

actions, it provides several user-selectable options for phantomizing goals with these actions.

These options have proved quite useful in domains that have been implemented.

Regarding the use of instantiation to accomplish goals, the system provides the user

with several options. One choice is to instantiate whenever possible. This does not actually

instantiate variables unless there is only one possible instantiation to accomplish the goal;

in other cases it simply posts a pred constraint (which is the least commitment consistent

with solving the goal). This is the choice most often used in the domains implemented in

SIPE. Another choice is never to instantiate, which never posts constraints of any kind,

thus avoiding any commitment. A third choice is to instantiate, but only when there is one

possible binding that will accomplish the goal. This will post instan and same constraints but

not pred constraints. In addition, the user can provide a list of action and predicate names

that are exceptions to the general choice. If either of the first two choices above is selected,

an excepted predicate/action is treated as if the other choice had been selected. When the

third choice above is selected, no constraints will be posted on an exception. Exceptions

were used in one domain, and were quite useful because the desirability of phantomizing by

instantiation aligned itself nicely with predicate names.

Options for using helpful parallel interactions to accomplish goals are more restricted

because adding ordering constraints is an irrevocable act and instantiations may also have to
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Figure 9.1: Plan for Three-Conjunct Block Problem

be made. SIPE provides three options to the user: 1) never add ordering constraints for tile

purpose of phiantomnization, 2) only add ordering constraints when no other constraints are

required to accomplish the phantomnization, and 3) add ordering constraints when there is a

parallel branch with an effect that has only one possible instantiation for accomplishing the

phantomnization. The second option, no additional constraints, means that the helpful effect

in a parallel branch is necessarily codesignating with the goal being pliantomized, and that 9

no possibly codesignating clobberers exist on this branch after this effect. InI other words,

the goal we are phiantomnizing is guaranteed to be true at the end of the p~arallel branch.
The third choice also requires that no possibly codesignating clobberers exist, but allows the

effect to be possibly codesignating as long as there is only one possible instanitiation that will

make it codesignate. Thus, addition of only same and instan conistraints will guaranltee the W

phantomization at the end of the parallel branch.
N.
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A further complication when adding ordering constraints is that several linearizations

(i.e., additional ordering constraints) may be proposed at the same time. In this case, SIPE -

uses the plan rationale to reason about which should come first. Let us consider the standard

block-world problem of getting A on B on C, using the Puton operator shown in Chapter 3.
In this case, the initial goal is given as three parallel conjuncts, achieving (On C Table), (On
A B), and (On C B). Assuming a initial state where the blocks are stacked on each other in

reverse order, SIPE produces the plan shown in Figure 9-1 after one planning level. The goal

phantomization critic, using either of the two options which allow linearizations, proposes to I
put C on the table before the other two branches, because it makes B clear which is a goal

in both the other branches. It also proposes to put B on C first because it makes B clear,

which is a goal in getting A on B.

While a simple heuristic could recommend that the former proposed linearization come

first in this case, it is more general to reason about the rationale behind the branches. SIPE

looks at the protect-until values of the goals being phantomized by the proposed linearizations,

and takes these to be the reasons for the linearizations. Thus, the Clear B goal in the B-on-C

branch is being protected until (On B C) is achieved, so the system assumes the reason for

proposing this linearization is to achieve (On B C). SIPE delays any linearization that would

accomplish the reason for doing a second proposed linearization. It would not be reasonable

to consider the second linearization if its reason had already been achieved. Putting C on

the table first does not achieve (On A B) which is the reason for the other linearization, but

on for putting C on the table. This algorithm

therefore first puts C on the table and then B on C.

The above options for phantomization through instantiation and linearization add flexi-
bility to the system and provide more tools for doing efficient planning in particular domains.
The choice of certain options may not guarantee completeness in a given domain. While

it would be nice to have the planner solve the problem correctly without the user choosing

these options, that involves solving more than one combinatorial problem. The set of tools

described here permits solutions to problems that would be beyond the reach of a complete

planning system. The heuristics involving the existence of only one possible instantiation are

useful because one often does not want to make a commitment when the possibilities are rich,

but does when it is the only choice. We are not committed in principle to the avoidance of

backtracking points in goal phantomization, although this option has been selected to make
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SIPE efficient. It may be desirable to allow choice points for the solving of goals by either

instantiation or linearization in domains where the problem can be kept tractable.

NOAH was not able to take advantage of helpful interactions. It solved the block stacking

problem by responding to harmful interactions; if the conjuncts had not interacted in a

harmful way, NOAH would not have ordered them to take advantage of any helpful effects.

NOAH did have an "eliminate redundant preconditions" critic that eliminated preconditions

that occurred twice in the plan, but this could not recognize and react appropriately to a

single precondition that was an integral part of the plan being achieved in a parallel branch.

'I

NONLIN, on the other hand, did have an ability to take advantage of helpful interactions,

though it was not described in detail. This is an important ability in many real-world domains,

since helpful side effects occur frequently. For example, if parallel actions in a robot world

both require the same tool, only one branch need plan to get the tool out of the tool box.

9.4 Solving Harmful Interactions

As with helpful interactions, there is no easy way to solve harmful interactions. Here too a

correct solution may require that all future consequences of an ordering decision be explored.

Stratagems other than ordering may be necessary to solve the problem. For example, a

new operator may need to be applied at a higher level. Consider the problem of switching

the values of the two registers in a two-register machine. Applying the register- to- register

move operator creates a harmful interaction that no ordering can solve, since a value is 

destroyed. The solution to this interaction involves applying a register- to- memory move

operator at a high level in order to store one of the values temporarily. Correcting many

types of harmful interactions efficiently seems very difficult in a domain-independent planner

- domain specific heuristics may be required.

In NOAH, problematic parallel interactions were detected by the TOME and handled

by the resolve-conflicts critic. SIPE has several techniques for dealing with this problem

that greatly extend the capability in NOAH. The most important one is its ability to use

resource reasoning to handle many problems that other classical planners would have to

resolve through harmful parallel interactions. Since resource reasoning is more efficient and

easier to express in operators, this transferal of effort is advantageous for several reasons.

Resource reasoning is an important contribution of SIPE and is described in Chapter 10.
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Another important technique for dealing with nonlinear actions is distinguishing between

main effects and side effects of an action, as discussed in Chapter 5. SIPE only recognizes

and resolves interactions dealing with the main effects of nodes. (One of the interacting

effects may be a side effect, but interactions between two side effects are ignored). This

greatly reduces the computational burden by not requiring the system to resolve conflicts

that do not matter anyway. The user can use the system's flexibility to properly represent

predicates as main or side effects. SIPE also simplifies the problem by not shuffling actions

between two parallel branches - it will only order the actions by putting one branch before or

after the others. Although this does prevent some elegant solutions from being found (e.g.,

the Sussman anomaly - see examples below), it retains efficiency while not being overly

restrictive.

The parallel interaction critic makes use of the plan rationale in determining which solvers

to apply to a harmful interaction. Suppose a particular predicate is made false by an effect

on one parallel branch and true by a different effect on another parallel branch. Depending

on the rationale for including these effects in the plan, it may be the case that each effect

is not relevant to the plan (an extraneous side effect), or must be kept permanently true

(the purpose of the plan), or must be kept only temporarily true (a precondition for later
achievement of a purpose). SIPE's ability to specify plan rationale flexibly and to separate

side effects from main effects enables it to distinguish these three cases accurately, something

NOAH and its predecessors could not do.

Solutions to a harmful interaction may depend on which of these cases holds. Let us call

the three cases side-effect, purpose, and precondition, respectively, and analyze the conse-

quent possibilities. If the effect in conflict on one branch is a precondition, the proposed

.clution is to further order the plan, first doing the segment of the plan that extends from

the precondition on through its corresponding purpose. Once this purpose has been accom-

plished, there will be no problem in negating the precondition later. This solution applies

no matter which of the three cases applies to the other conflicting effect. (Thus if both

conflicting effects are preconditions, two different solutions can be proposed.)

In the case of a side-effect that conflicts with a purpose, the proposed solution is to order

the plan so that the side effect occurs before the purpose; thus, once the purpose has been
'p.

accomplished it will remain true. When both conflicting predicates are purposes, there is e

no possible ordering that will achieve both purposes at the end of the plan. The planner
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must backtrack and use a different operator at a higher level, or plan to reachieve one of the

purposes later. The latter is attempted first by SIPE, and backtracking will happen if this

fails. Reachieving a purpose is accomplished by calling the Insert-parallel replanning action

described in Chapter 11. This replanning action checks which parallel postconditions on the

join node are not true and inserts goal nodes for them after the join node (requiring that all

parallel postconditions be true at the end of the newly inserted goals).

This briefly summarizes SIPE's algorithm for dealing with harmful interactions. It should

be noted that none of the above proposed solutions can be guaranteed to produce the best

(according to some metric, e.g., shortest) solution. Systems like NOAH and NONLIN do

similar things with harmful interactions. However, SIPE provides methods for more precise

and efficient detection, through its plan rationale and resource reasoning. It should be em-

phasized that many interactions that would be harmful in the other systems are dealt with

in SIPE by the resource-reasoning mechanisms and therefore do not need to be analyzed.

Unlike previous systems, SIPE ignores interactions among side effects.

9.5 Adding Ordering Constraints

The addition of ordering constraints is used to solve resource conflicts, to phantomize goals,

and to solve harmful parallel interactions. SIPE collects proposed linearizations and attempts

to optimally order them (as described in goal phantomization) before carrying them out. Once

they are carried out, the interaction of the newly ordered part of a plan with the remainder

of the plan is complex. In addition to possible interactions between various nodes in the

plan, there may even be changes in the information contained in the nodes. In particular,

deduced effects may be different, and optional-not-same constraints added by the system to

avoid resource conflicts may no longer be valid. For this reason, SIPE generates the newly

ordered plan and analyzes the problems caused by the new ordering. If they are extensive,

the linearization is rejected.

To check a possible linearization, the system first removes optional-not-same constraints

that are no longer valid and recalculates all the deduced effects in the remainder of the plan. It

then checks for interactions between nodes in the plan. When SIPE was initially implemented,

it had simple heuristics for accepting a newly ordered plan that often resulted in incorrect and

nonoptimal plans. Once the system's execution monitoring and replanning capabilities were
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implemented (see Chapter 11), it became obvious that the addition of ordering constraints

could be treated exactly like an unexpected occurrence during execution. Checking the

proposed linearization proceeds by calling the problem recognizer of the replanning module

which finds any possible problem that the linearization might create in the remainder of the

plan.

If problems are discovered, the linearization is generally rejected. In certain cases how-

ever, replanning actions are applied to further modify the plan after linearization, sometimes

adding goals and sometimes removing subplans. New goals are inserted when the parallel

postconditions of a join node are not true. If the linearization makes some goal true that ac-

tions later in the plan are trying to achieve, some part of the remaining plan can be removed

and replaced by a phantom node. The replanning module already has actions for doing ex-

actly this, and the example in the next section shows a trace of the system shortening a plan

in this manner. This both corrects invalid plans and makes suboptimal plans more efficient.

The power to modify plans in this way makes the system considerably more powerful than

previous classical planners. Chapter 11 describes how the replanner uses the plan rationale

to find problems in a plan and correct them.

9.6 Examples

Block-world problems have been used throughout to explain the operation of the critics

because their simplicity allows the issues involved to be clearly brought out. Using the

critics described in this chapter, SIPE correctly solves all the standard block-world problems

involving three blocks. The only problem for which a nonoptimal solution is obtained is the

Sussman anomaly (C is initially on A, and A and B are on the table) when the initial goal is

given as the two parallel conjuncts (On A B) and (On B C). In this case, SIPE produces a plan

in which B is first moved onto C and then moved back to the table. This shortcoming is not

a failure of the critics, but rather a consequence of our assumption that parallel branches will

not be shuffled together. Given the above restrictions on the representation of the problem,

finding the optimal solution requires separating the goal of clearing A in the On A B branch

from the rest of the branch.

SIPE does produce the optimal solution to the Sussman anomaly when given the three-

conjunct problem (with (On C Table) as a conjunct), because the goal phantomization critic
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Figure 9.2: Initial Blocks World and Problem To Be Solved

correctly puts C on the table first, as described above. With the three-conjunct problem, the

system produces optimal solutions for all possible problems from all possible initial states.

Requiring three conjuncts in the problem is quite reasonable. People would have a hard
I

time solving the Sussman anomaly with no more knowledge of the On relation than we give

classical planners. The latter generally have no way of knowing that towers must be built

from the bottom up, or even that blocks on the bottom of a tower cannot also be on top of

the tower. Providing the information that C must be on the table is something all humans

would have incorporated in their background knowledge of the world.

The simple block-world problem shown in Figure 9-2 has been useful in testing and .'

developing SIPE. This assumes a world of red blocks and blue blocks, and the problem is

to get any red block on top of another red block in parallel with getting any blue block on I

top of any other blue block. The problem has four variables and no constants, which makes

it useful for testing system performance when nothing is instantiated. Many algorithms

(from deducing effects to plan critics) which work on ground problems fail on this problem.

Because of the use of variables and constraints, most previous classical planners could not

have represented and solved this problem. An annotated trace of SIPE solving this problem

is presented below. It shows the order and frequency with which the automatic search invokes

various mechanisms, and also uses many of the critics described above, including the use of
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replanning actions to shorten the plan after a linearization.

Planning at level 1.
2. unexpanded nodes: P4529 P4523
Expanding node P4529 with action PUTON
Expanding node P4523 with action PUTON

New plan produced:
PLANHEAD: P4606
SPLIT: C4605

Parallel branch:
SPLIT: C4618

Parallel branch:
GOAL: P4623 (CLEAR objectl-N4526)

Parallel branch:
GOAL: P4620 (CLEAR blockl-N4S24)

JOIN: C4619
PROCESS: P4626 PUTON.PRIM blockl-N4524 objectl-N4526

Parallel branch: K.

SPLIT: C4595
Parallel branch:

GOAL: P4600 (CLEAR objectl-N4532)
Parallel branch:

GOAL: P4597 (CLEAR blockl-N4530)
JOIN: C4596
PROCESS: P4603 PUTON.PRIM blockl-N4530 objectl-N4532

JOIN: C4607

Checking constraints. Constraints satisfiable.
Success: node P4623 changed to phantom.
Success: node P4600 changed to phantom.
Success: node P4597 changed to phantom.
Found 0. harmful interactions.
checking parallel postconditions:

(ON redblock3-N4530 redblock4-N4532)(ON blueblock3-N4524 B2)

The above is the first planning level which applies the Puton operator to both branches of the
problem, then applies the critics which do not find any problems. The three phantomizations

instantiate one of the blueblock variables to B2 (because there is only one possible instantiation
that make a blue block clear), and place pred constraints on the redblock variables.

Planning at level 2.
1. unexpanded nodes: P4620
Expanding node P4620 with action CLEARTOP
matching condition: (ON blockl-N4638 objectl-N4524)
(COLLECTED 1. POSSIBILITIES)
Adding INSTAN constraint: these two bound: blockl N4638, RI
Adding INSTAN constraint: these two bound: objectl N4524, Bi
This phantom no longer true, changed to goal: P4674
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This phantom no longer true, changed to goal: P4685

New plan produced:
PLANHEAD: P4651
SPLIT: C4650

Parallel branch: I
SPLIT: C4675

Parallel branch:
GOAL: P4685 (CLEAR blockl-N4530)

Parallel branch:
GOAL: P4674 (CLEAR objectl-N4532)

JOIN: C4676
PROCESS: P4677 PUTON.PRIM blockl-N4530 objectl-N4532

Parallel branch:
PROCESS: P4642 PUTON R1 object2-N4636
GOAL: P4646 (CLEAR Bi)
PROCESS: P4653 PUTON.PRIM BI B2

JOIN: C4654

Checking constraints. Constraints satisfiable.
Success: node P4685 changed to phantom.
Success: node P4674 changed to phantom.
Success: node P4646 changed to phantom.
Found 0. harmful interactions.
checking parallel postconditions: (ON redblock3-N4530 redblock4-N4532)(ON B1 B2)

The second planning level applies Cleartop to move RI off of BI to an unspecified place.
These instantiations are forced because B1 is the only blue block other than B2, and the tuo

blueblock variables have been constrained to not be the same as each other by the application
of Puton at the first planning level. Phantoms that do not necessarily codcsignate with the
effects that make them phantoms are reset to goals before the critics are callcd. Again the
critics find no problems as the rcdblock variables have not yet been instantiated.

Planning at level 3.
1. unexpanded nodes: P4642
Expanding node P4642 with action PUTON
This phantom no longer true, changed to goal: P4700
This phantom no longer true, changed to goal: P4723
This phantom no longer true, changed to goal: P4734

New plan produced: %

PLANHEAD: P4699
SPLIT: C4698

Parallel branch:
SPLIT: C4724

Parallel branch:
GOAL: P4734 (CLEAR objecti-N4532)

Parallel branch:
GOAL: P4723 (CLEAR blockl-N4530)
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JOIN: C4725
PROCESS: P4726 PUTON.PRIM blockl-N4530 objectl-N4532

Parallel branch:
SPLIT: C4686

Parallel branch:
GOAL: P4691 (CLEAR objectl-N4636)

Parallel branch:
GOAL: P4688 (CLEAR RI)

JOIN: C4687
PROCESS: P4694 PUTON.PRIM R1 objectl-N4636
GOAL: P4700 (CLEAR B)
PROCESS: P4702 PUTON.PRIM B1 B2

JOIN: C4703

Checking constraints. Constraints satisfiable.
Success: node P4734 changed to phantom.
Success: node P4723 changed to phantom.
Success: node P4691 changed to phantom.
Success: node P4688 changed to phantom.
Success: node P4700 changed to phantom.
Found 0. harmful interactions.
checking parallel postconditions: (ON redblock3-N4530 redblock4-N4532)(ON BI B2)

The third planning level applies Puton to move RI to some unspecified place. Again the critics

find no problems as the rcdblock variables have not yet been instantiated.%

Planning at level 4.
0. unexpanded nodes: success
recursion succeeds, applying critics
Checking constraints. Constraints satisfiable.
Adding INSTAN constraint: these two bound: objecti N4636, TABLE
Adding INSTAN constraint: these two bound: objectl N4532, R2
Adding INSTAN constraint: these two bound: blockl N4530, R1

Adding INSTAN constraint: these two bound: object3 N4727, BiAdding INSTAN constraint: these two bound: object3 N4678, BI
Adding INSTAN constraint: these two bound: object3 N4610, B1
Adding INSTAN constraint: these two bound: object3 N4581, B

The goal phantomization critic has phantomized all goals, so the planning is fin ished and
the critics must be rechecked in light of the new constraints added by these phantomizations.

Solving the global constraint nctwork forces all variables to be instantiated, producing the

invalid plan shown below. %

Short version of final plan (use DISPLAY to view):
PLANHEAD: P4699
SPLIT: C4698

Parallel branch:
PROCESS: P4726 PUTON.PRIM RI R2
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Parallel branch:
PROCESS: P4694 PUTON.PRIM R1 TABLE
PROCESS: P4702 PUTON.PRIM BI B2

JOIN: C4703

Found 1. conflict.
RESOURCE R1 IN BRANCH BEGINNING WITH NODE C4724 conflicts with

RESOURCE RI IN BRANCH BEGINNING WITH NODE C4697

Ordering the plan. Linearized part of plan to end:
PROCESS: P4726 PUTON.PRIM Ri R2
PROCESS: P4694 PUTON.PRIM R1 TABLE
PROCESS: P4702 PUTON.PRIM B1 B2

Since the Puton operator describes the block it is moving as a rcsource, the resource-reasoning

critic described in the next chapter recognizes the problem in this plan and fixes it by adding

further ordering constraints. If the Puton operator had not declared a resource, the harmful

interaction critic would have proposed the same linearization (though at a higher computa-

tional cost). 0

Calling problem recognizer.
Future precondition failed: (ON RI Bi)

Removing part of plan from net. Deleted part starts with:
PRECONDITION: P4696
Goals: (ON R1 Bi);
Effects: (ON R1 BI);
Protect-until: (CLEAR B1);

Deleted part ends with:
PHANTOM: P4700
Goals: (CLEAR B1);

Node to be copied and inserted:

GOAL: P4620
Action: CLEARTOP expansion: (P4641 P4646) context: (TOP . TOP)
Goals: (CLEAR Bi);
Effects: (CLEAR BI);
Protect-until: (ON Bi B2);

The solver for adding ordering constraints calls the problem recognizer which recognizes that

the precondition for clearing B1 (RI being on top of 1I) is no longer true when expected.

It the calls the Pop-redo replanning action (see Chapter 11) which removes the wedge of the

plan that was created to clear BI and replaces it with the goal (from the top of the wcdge) of

clearing B1 (which will become a phantom).

checking parallel postconditions: (ON RI R2)(ON Bi B2)
Planning at level 4.
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Success: node P4773 changed to phantom.

New plan produced:
PLANHEAD: P4844
PROCESS: P4846 PUTON.PRIM RI R2
PROCESS: P4852 PUTON.PRIM BI B2

Found 0. harmful interactions.
checking parallel postconditions: (ON R1 R2)(ON B1 B2)

Planning at level 5.
0. unexpanded nodes: success
recursion succeeds, applying critics
Found 0. harmful interactions.
checking parallel postconditions: (ON R1 R2)(ON B1 B2)
SIPE solved problem, use DISPLAY to see plan.
Evaluation took 6.6017348 seconds of elapsed time.

The evaluation time was taken from a run in which the tracing was not on. The type of trace
printed here takes several more seconds.

This example brings out many of the features of the automatic search and the plan
critics. It shows the application of the critics after each planning level and their reapplication

whenever the adding of constraints solves the problem. An invalid plan is produced, it is

correctly linearized into a suboptimal plan, and the problem recognizer then modifies this

plan to make it optimal. The reason SIPE's solution incorporates these steps is its least

commitment strategy regarding phantomization by instantiation. The system keeps open

different possibilities for the variables instead of instantiating them immediately. In a more

complex problem, this may have enabled a more elegant solution to be found. For example,

suppose some other problem constraint had, after several levels of planning, required that

R2 be put on Ri. SIPE could have incorporated this in its plan at any planning level, since

the redblock variables were never instantiated. Then the parallel branch of putting RI on

the table and B1 on B2 could have been ordered first, following by putting R2 on R1, thus

obtaining the optimal solution without any extraneous effort (such as retracting part of a

plan). This example also provides a scale for measuring our claims of efficiency for SIPE. This

problem, with its many applications of critics and solvers that require many unifications of

uninstantiated variables that have pred constraints, takes less than 7 seconds on a Symbolics

3600.
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Chapter 10

Resources: Reusable, Consumable,

Temporal

When humans are doing planning and scheduling, they frequently describe tasks in terms of

the resources that are required. This appears to be a very useful concept for reasoning about

how different activities interact, and is used by many scheduling algorithms. When there is

a harmful interaction between two actions in a nonlinear plan, there is often something that

can be considered a resource for which the two actions are contending. The concept of a

reusable resource, in particular, is ubiquitous. For example, whenever one process is using

a tool (e.g., a hammer or soldering iron), no other process should plan to use the same tool
simultaneo'sly.

Thus it is natural to consider reasoning about resources in a planning system. The wide

applicability of resource reasoning capabilities means the effort required to encode them

should be rewarded. In this chapter, we describe SIPE's implementation of such capabilities,

which represent the first attempt to incorporate them into a classical Al planning system.

Three significant advantages have been obtained by reasoning about resources. First, it is

a more natural and graceful way to interact with users, since humans are more comfortable
talking about resource requirements and conflicts than about harmful parallel initeractions. k

Second, the system obtains computational advantages because it is able to detect resource

conflicts earlier and with less effort than by using the traditional methods of analyzing harmful

parallel interactions. Third, with the implementation of consumable and temporal resources
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which require numerical reasoning, the system has the power to express an important new

class of domains.

Resources can be viewed as a powerful tool that can be employed by the user to represent

domain-specific knowledge concerning the behavior of actions. There are many types of

resources that might be useful, and SIPE provides two of the most general types of resources,

reusable and consumable. The formalism for representing operators in SIPE includes a means

of specifying that some of the variables associated with an action or goal actually serve as

resources for that action or goal. In the Puton operator in Chapter 3, we saw the block being

moved described as a resource. This causes the system to treat these objects as reusable

resources, and no possibly parallel action will be permitted to use the same object as an

argument and/or resource.

There is no simple way to describe the handling of a consumable resource, so SIPE pro-

vides mechanisms for declaring the production and consumption of resources, and calculates

predicates describing their levels so that the user can specify goals using these predicates.

This provides flexibility, as the user can place whatever requirements he desires on the levels

of consumable resources, as long as they can be expressed with the provided predicates in

the operator specification language of the system. Our implementation provides the basis for

reasoning about producible and consumable resources, as well as limited forms of temporal

reasoning (e.g., specifying constraints on the starting time of an action). The same repre-

sentations and algorithms work for both these tasks because time is considered to be a type

of consumable resource - namely, one that can be consumed but not produced, and whose

consumption in the course of parallel tasks is nonadditive.

We will explain the system's use of resources by using simple block-world examples. This

is not to say that the block world is best reasoned about in terms of resources. Rather,

the block world provides simple examples that can be used to clearly explain the underlying

mechanism. This use of resources also reiterates the view that the mechanisms provided by

SIPE are simply tools that can be used to solve a problem. Thus the resource-reasoning

tool can be used to correctly produce block-world plans, even if it is not the preferred way
to approach the problem. Resources are not necessary for SIPE's block-world planning; the

system would solve the same problems just as well without declaring any resources.
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10.1 Reusable Resources

The idea behind our implementation of reusable resources is simple: If objects are declared

as resources, then no possibly parallel action will be permitted to use the same object as

an argument. Because this is sometimes too strong a restriction, SIPE also permits the

specification of shared resources, whereby a resource in one branch can be an argument in a

parallel branch, but not a resource. The logical extension of this would be to have predicates

that specify sharing conditions, but this has not yet been implemented.

If a parallel branch does use a resource as an argument/resource, then this resource

conflict will be detected by the resource critic that is used in conjunction with the other

critics described in the previous chapter. If a resource conflict is found, it is treated much the

same as a harmful parallel action, with the system applying solvers to correct the problem.

Generally, the solution for a conflict is the addition of ordering constraints. The example in

Chapter 9 shows the resource critic solving a problem in this manner.

SIPE uses a heuristic for solving resource-argument conflicts. Such an interaction occurs

when a resource in one parallel branch is used as an argument in another parallel branch (as

distinguished from a resource-resource conflict, in which the same object is used as a resource

in two parallel branches). The heuristic is to order the branch using the object as a resource

before the parallel branch using the same object as an argument. The assumption is that

the action using the object as a resource will be more dynamic with respect to the object

(e.g., changing its state or location), and the action using the object only as an argument

will be more static with respect to the object. Consequently, the resource action is done first

to ensure that the object will be in more of a stable configuration when later actions occur

that employ it as an argument. The above argument may not be convincing, and certainly

this heuristic is not guaranteed to be correct, but it is another tool provided by the system

that has been proved useful in the four domains encoded in SIPE. By simply setting a flag,

the user can prevent the employment of this heuristic if it is inappropriate for a particular

domain. -

The system does attempt to form plans that do not p)roduce resource conflicts when it

is possible to do so. Whenever parallel actions with resources are inserted into the plan,
'V

SIPE finds all potential resource conflicts an( posts optional-not-same constraints whose

satisfaction will prevent these conflicts from occurring. (It also removes these constraints
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appropriately when ordering constraints are added.) The resource-allocation critic described

in the last chapter attempts to instantiate variables so that these constraints are satisfied. S

For example, if a robot arm is used as a resource in block-moving operators, the system will

try to use different robot arms (if they are available) on parallel branches, thus avoiding

resource conflicts. If only one arm is available, it will be assigned to both parallel branches.

This will then be recognized as a resource conflict and the resource critic will attempt to

resolve the conflict by further ordering the plan. In this way many conflicts are averted by

intelligent assignment of resources.

Handling reusable resources in this way provides several advantages. First, the represen-

tation is efficient and easy to use. Simply declaring something as a resource brings to bear

considerable functionality. As an example, consider planning the actions of several carpen-

ters who are sharing a set of tools. In SIPE, one merely specifies all tools as resources in its

operators and the system will automatically avoid conflicts in their use. In other classical

planners, the user would have to axiomatize the requirements on multiple use of a tool. For

example, operators may need preconditions requiring tools to be available and actions that

list as effects the fact that tools are not available. Conflicts between these effects and pre-

conditions/goals would then be recognized by the normal mechanism for handling harmful

parallel interactions.

In addition, there are computational advantages. Resources conflicts can be detected with

less effort than harmful parallel interactions, because checking whether two variables (at least

one of which has been declared a resource) pose a resource conflict is simply a manner of

unifying them. The primary advantage, however, is that conflicts can be detected earlier in

the planning process, often at a higher level of abstraction. The planner does not need to

plan down to the level where availability effects and goals produce harmful interactions. The .5

resource conflict can be recognized as soon as the resource is inserted in the plan.

The block-world example of achieving (On A B) and (On B C) as a conjunction shows

how SIPE's resource reasoning can be used as a tool to achieve these advantages. While

the domain of constructing objects in a machine shop is more suitable for use of reusable

resources, using resources in the block world is instructive because of the coml)arison this

allows with block-world solutions of other planners. In this example, we will use the Puton

operator from Chapter 3 that describes the block being moved as a resource. Figure 10-1

depicts a plan that might be produced by NOAII or NONLIN (or by SIPE without making
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SPLIT JOIN ON B

CLEAR . . . . . . . . . . . . . . . . . . . . i b k - -

CLLEAR Bi EFET

SPLIT (LA 1JOIN

SSPLIT JOIN ON C
),CLEAR C EFFECTS (ON B C)

- (CLEAR C)

Ii
)I

II

Figure 10.1: A Plan without Resources

use of resource reasoning) for this problem (from an arbitrary initial situation) after applying

a standard puton operator to both original goal nodes. Figure 10-2 shows a plan from SIPE

using the Puton operator with resources to expand the goal of getting B on C.

The central problem is to realize that B must be put on C before A is put on B (when

starting from the Sussman anomaly, C must be moved before achieving either of these goals).

Without resources, the condition of B being clear is eventually used to detect the conflict in

Figure 10-1. NOAH and NONLIN both build up a table of multiple effects (TOME) that

tabulates every predicate instance listed as an effect in the parallel expansions of the two

goals. (SIPE would do a similar calculation, ignoring side effects, while calculating harmful

interactions.) Using this table, the programs detect that B must be clear in the expansion

of (On B C), but is made not clear in the other expansion. This problem is then solved by

doing (On B C) first. Note that this interaction cannot be detected until the planning was

proceeding to the abstraction level at which the Clear predicate is planned. In this example,

that happens right away, but in a more complex domain it may not (e.g., in the robot domain,

conflicts that are recognized at the level of the locational grid will not be detected until quite
late in the planning process)..,

Using resources, SIPE can detect this problem and propose the solution (using its resource"J

heuristic) without having to generate a TOME. In the Puton operator with resources, the .

109

% ,,-
%A



ONA
ARGARGMEN'SS 8SPLIT JOIN

CLEAR 8 P

ARGUMENTS: C

Figure 10.2: A Plan with Resources

block being moved is listed as a resource. Thus, as soon as the expansion of (On B C) with

the Puton operator is accomplished and the plan in Figure 10-2 produced, SIPE recognizes

that the plan is invalid because B is a resource in the plan for getting B on C and an argument

in the (On A B) goal. SIPE's heuristic for solving a resource-argument conflict is to put the

branch using the object as a resource first, so the resource critic proposes that B be put on

C before A is put on B. This can de detected without analyzing interactions, and without

expanding the (On A B) goal. Although the latter matters little in the block world, it could

be very important if the goal would have to be expanded several levels before the interaction

was detected. ,p

This correction of the plan has the advantage of both being faster (interactions need not

be analyzed) and providing earlier detection (which can avoid the search of a large part of the

search space). While this may not be the best encoding of the block world, it does use SIPE's

resource tool to good effect. This implementation does not do sophisticated reasoning about

resources, such as analyzing the requirements on a particular class of objects and signalling a

problem as soon as requirements exceed supply. This is a good area for later expansions of the

system, although many such algorithms would appear to require (lomain-specific knowledge %

to be effective.
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.

10.2 Representation of Numerical Quantities
I

SIPE has mechanisms for reasoning about numerical quantities, both continuous and discrete,

which provides the basis for reasoning about producible and consumable resources. These

mechanisms have been integrated within the existing framework of adding constraints to

planning variables. The user invokes these mechanisms simply by declaring variables to be

in the numerical class, and using constraints and certain distinguished predicates on these

variables.

This design provides flexibility, as the user can place whatever requirements lie desires 7

on numerical quantities, as long as they can be expressed with the provided predicates in

the operator specification language of the system. This provides a basis both for reasoning

about producible and consumable resources and limited forms of temporal reasoning. The

same representations and algorithms work for both these tasks because time is considered to I

be a type of consumable resource - namely, one that can be consumed but not produced,

and whose consumption in the course of parallel tasks is nonadditive. %

The system can employ all its standard planning algorithms to solve numerical problems %

by treating numbers as objects, and providing numerical variables, numerical constraints, and

numerical predicates. The system automatically computes level predicates from predicates

that describe the production and consumption of numerical quantities, and the user can

specify goals and preconditions that involve these levels. First we describe the representations

used for numerical objects, constraints, and predicates. Following that, we show how the

representation is used to reason about consumable resources, then we describe how these

representations are manipulated by the system.

I

e Objects

SIPE objects can include numbers, lists of numbers, ranges, and functions. These can be

instantiations of planning variables or values of constraints posted by either the user or the

system. Lists of numbers are provided for temporal reasoning along the lines of Ladkin's

TUS syntax [16]. Initially, SIPE will add lists of numbers by using the list (60 2.1 31 12 0)

as the limits for carrying. This is intended to correspond to minutes, hours, days, months,

and years. The user can customize his temporal representation simply by setting a global

variable to some other list. For example, one could use (31 12 0) when only concerned about,
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days, or (60 24) when planning the events of a single day. Lists of numbers have the same

status as numbers and can occur anywhere a number is required (e.g., as the lower bound

of a range, the value returned by a function, or the instantiation of a variable). Ranges

are pairs of numbers that represent the lower and upper bounds of a range. Functions are

represented by the function name and a list of arguments that can be any objects or planning

variables known to the system. The function must return a number whenever it is called with

completely instantiated arguments. The system ensures such instantiations before calling the

function.

* Variables

Variables can be constrained to be members of two distinguished classes, numerical and

continuous. The first is used for variables that will eventually be instantiated to one particular

number, just as an ordinary variable is instantiated to an object. For example, this would be

used to represent the starting time of a planned action. Variables in the continuous class will

have values that vary with time and must be computed by the system. These can be used a-

to represent the level of a consumable resources, e.g., the amount of petrol in a fuel tank.

To finalize a plan, numerical variables should be instantiated to numbers, while continuous

variables merely need to have satisfiable constraints. In addition, there will be phantom and

precondition nodes in the plan whose truth the system must maintain to assure that the

continuous variables have the right value at particular times. In the rest of this chapter,

the term numerical variable will be used to refer to members of either of the above classes.

In fact, the continuous class is implemented in the SIPE sort hierarchy as a subclass of the

numerical class.

* Constraints

There are five constraints that may be posted only on numerical variables. (Other con-

straints may also be posted on numerical variables.) Most of their description in Chapter 4

is reproduced here.

Current value A numerical variable can be constrained to be the current value of a

continuous variable at some point in the plan. This permits operators to reason about and

place constraints on the value that some continuous variable has at some particular point in

time.
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Previous value This is the same as current value except that the value is taken just

before the current node instead of just after it.

Range - A variable can be constrained to lie within a certain range.

Function - A variable can be constrained to be the value of a certain function applied

to any number of arguments. If some of these arguments are not instantiated. SIPE will

compute a range from the function constraint by calling the function on all the possible

instantiations.

Summary range-- Since computing the above constraints (especially function constraints)

can be expensive, it was necessary to address the problem of choosing between storage and

recomputation. Our solution is to store the results of computing a noncontinuous variable's

constraints by placing a summary-range constraint on the variable. (This cannot be done for

continuous variables because their values vary with time.) These constraints are not posted

by users, but only by t'ie system.

* Predicates

Several distinguished predicates are treated specially by SIPE. These are level, produce, and

consume. We will speak only of a level predicate, although there are actually five predicates

which implement equality as well as relational predicates on levels: level, level <, level >,

level <=, and level >=. These predicates occur at certain points in a plan and operate on

the values of continuous variables at those points. All of these predicates can be viewed as

having two arguments - one specifying the quantity being compared (e.g., the resource pool

or fuel depot), the other specifying the numerical value that is being produced or consumed,

or that must be equal to the value of the specified quantity. The former can, in fact, be a

tuple of normal SIPE arguments (i.e., variables and objects known to the system). The latter

is computed by taking into account the starting level and all nodes that are part of the plan

previous to the current node whose effects contain ct'dl, produce, and consune predicates.
%

All five lvel predicates can be used in preconditions and goals.

.
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10.3 Consumable Resources

Before describing the algorithms used to manipulate the above representation, we will expli-

cate our implementation and show its utility by describing soie problems solved by SIIP . 'I

Consumable resources are implemented through the use of lcr(l. produce, ad consum( pred-

icates and appropriate numerical variables. The clearest way to show this is to extend the

standard blocks world. To reason about consumable resources, we assume that different

blocks have different sizes and that block-moving actions use up the robot's fuel as a function

of block size. )ifferent moving actions have different functions for fuel consumption (e.g.,

Government-Puton uses fuel twice as fast as Fuel-Puton). SIPE was able not only to repre-

sent this world, but also to generate )lans that required both selection of the correct operator

(Fuel-Puton) and selection of smaller blocks so as to achieve fuel goals.

The Fuel-Puton operator, shown in 10-3, consumes the same number of units of fuel as

- the size of the block being moved. A simple problem in this domain is also shown (both are

* given in the input syntax accepted by SIPE). The problem requires the robot to get some

block other than A on top of B, and afterwards have at least 5 but not more than 50 units of

fuel remaining. This operator has three arguments in addition to those used in Puton (in the

standard blocks world). These are the robot, a numerical variable for calculating the an-, ,unt

of fuel used by this operator, and a continuous variable used in the precondition to assure

that the continuously varying fuel level of the robot is sufficient for this operator. Since the

domain only requires one numerical level to be associated with the robot, the fuel level can

be represented by the predicate (Lcvcl robotl nurnericall). If the robot had other levels,

another argument could be added to the predicate, since SIPE permits a tuple of arguments

to represent the quantity with which a numerical value is associated. (Any predicate with a

different number of arguments refers to a different quantity). The precondition of Fuel-Puton

assures that the robot has enough fuel to accomlplish the actions of this operator (i.e., enough

fuel to move block I).

In the initial world, tie level of fuel call be specified with a hlel predicate. As actions

are performed they will use and replenish fuel. An action that uses fuel simply specifies, in

its effects, a consume pre(icate that denotes which fuel tank is being use(d (by giving the

robot as the first argument), and the amount that is consumed (this second argument may

be a function, a range, a number, or a list of numbers). Thus, the Fuel-Puton operator has a
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Operator: Fiiel-1titoni
Arguments: block 1, object I Is Not block 1 . robot 1,

nunierical I Is (Size block 1), coniti miuus I Is (Size blo ck I)
Purpose: (O11 block 1 object 1):
Precondition: ( Level > robot 1 conthiuows ):
Plot: '

Parallel

Branch 1:
Goals: (Clear object 1);

a Branch 2:
a Goals: (Clear blocki );

End Parallel

Process -

Action: Puton.Prinfitive;
Arguments: block 1 ,object I ,robot 1 .nrerical 1;
Resources: blocki;
Effects: (On blocki object I),

(Consume roboti numnericall );
End Plot End Operator C

Problem: P'robi

Goal
a' Arguments: blockl Is Not. A, 1I1;'

Goals: (O11 blockI 13); "
Goal

Arguments: robot 1, conitiinuouis Is [5 50];
Goals: ( Lcvc 1 > robot]I contiuouis1);

End Problem-

l'igtire 10.3: SlIVE B Ilock WXorld 0Operator and Plroblemi Usi ig Cons niable Ilesotirces
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consume predicate in the effects of the puton action in its plot. The system will then take this

consumption into account in all queries about the fuel level, which may involve determining

ranges within which the consumption must lie if the predicate has uninstantiated variables

as arguments. Similarly, an action that rel)lenished the fuel would post a produce predicate

as an effect. Alternatively, an action that always filled the tank to some known level could P

simply post a level predicate as an effect. Such a lcvel specification overrides previous produce

and consume predicates, in the sense that SIPE will no longer look at them to calculate the

fuel level, which is now given by the level predicate.

In the initial world of our example problem, Flakey has 40 units of fuel and A is on B.

SIPE is told to first try Government-Puton (when achieving On goals), which consumes twice

the number of units of fuel as the size of the block being moved. Since A has size 15, it will

thus require 30 units of fuel using this operator to clear B. Since the smallest block has size

5, the goal of having 5 units of fuel left cannot be accomplished by using Government-Puton

for both block moves. To meet the fuel goal, the system must therefore backtrack to use the

Fuel-Puton operator and it must also select one of the smaller blocks to be moved onto B.

An abbreviated annotated trace of SIPE solving this problem is presented below. It shows

the interaction of numerical reasoning with the rest of the system.

Checking for phantom: P4351 (LEVEL> Flakey Continuousl-N4352)
Success: node P4351 changed to phantom.

Planning at level 1.
Finding applicable operators for node P4347
Operators found: (Government-Puton Fuel-Puton Time-Puton)
Adding INSTAN constraint: these two bound: Robotl N4792, Flakey

New plan produced:
PLANHEAD: P4811 9.

SPLIT: C4800
Parallel branch:

GOAL: P4805 (CLEAR B)
Parallel branch: %

GOAL: P4802 (CLEAR Blockl-N4348)
JOIN: C4801
PROCESS: P4808 Gov.Puton.Prim Blockl-N4348 B Flakey Numericall-N4794

Checking constraints.
Checking LEVEL phantom: P4812 (LEVEL> Flakey Continuousl-N4352)
Constraints satisfiable.

Checking for phantom: P4802 (CLEAR Block1-N4348)
Adding PRED constraint for predicate: CLEAR Length: 3.
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Success: node P4802 changed to phantom.
Found 0. conflicts.-

The plan after the first planning level is to move sonic block onto B. The level goal for robot
fuel in the orginal problem is changed to a phantom since it is true in the current plan. ote

that continuous variables cannot have pred constraints posted on them that guarantee that

predicates will be true at particular times (because their values change over time). Thus, the

constraint satisfaction critic checks this level phantom as part of checking constraints. (This

effectively checks what would be pred constraints on continuous variables.)

Planning at level 2.
Finding applicable operators for node P4805
Operators found: (Cleartop)
Adding INSTAN constraint: these two bound: Blockl N4835, A

New plan produced:
PLANHEAD: P4849
SPLIT: C4846

Parallel branch:

GOAL: P4871 (CLEAR Blockl-N4348)
Parallel branch:
CHOICEPROCESS: P4839 Government-Puton Fuel-Puton A Object2-N4833

GOAL: P4843 (CLEAR B)
JOIN: C4850
PROCESS: P4851 Gov.Puton.Prim Blockl-N4348 B Flakey Numericall-N4794

Checking constraints.
Checking LEVEL phantom: P4852 (LEVEL> Flakey Continuousl-N4352)
Constraints satisfiable.

Checking for phantom: P4871 (CLEAR Blockl-N4348)
Success: node P4871 changed to phantom.
Checking for phantom: P4843 (CLEAR B)

Success: node P4843 changed to phantom.

Found 0. conflicts.

The plan after the second planning level is to move A off of B with either puton operator -

and to then move some block onto B with Governmint-Puton. This can be a valid plan if

Fuel-Puton is used to move A, so all constraints are satisfiable.

Planning at level 3.
Expanding node P4839 with action Government-Puton
Adding INSTAN constraint: these two bound: Roboti N4883, Flakey

New plan produced: ,S

PLANHEAD: P4906
SPLIT: C4903
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Parallel branch:
GOAL: P4931 (CLEAR Blockl-N4348)

Parallel branch:
SPLIT: C4891

Parallel branch:

GOAL: P4896 (CLEAR Objectl-N4833)
Parallel branch:

GOAL: P4893 (CLEAR A)
JOIN: C4892
PROCESS: P4899 Gov.Puton.Prim A Objectl-N4833 Flakey 30.
GOAL: P4907 (CLEAR B)

JOIN: C4908
PROCESS: P4909 Gov.Puton.Prim Blockl-N4348 B Flakey Numericall-N4794

Checking constraints.
Checking LEVEL phantom: P4910 (LEVEL> Flakey Continuousl-N4352)
LEVEL phantom fails. Numerical constraints unsatisfiable.
can't allocate to satisfy constraints

I-

Moving A off B is done with Government-Puton which uses 30 units of fuel. The block to

put on B has not been chosen, but SIPE has computed a range for the fuel consumption based

on the possible instantiations for this planning variable. The computation of level predicates

takes this range into account and the system realizes the fuel goal can no longer be achieved,

and backtracking is initiated.

Backtrack to try Fuel-Puton
Expanding node P4839 with action Fuel-Puton
Adding INSTAN constraint: these two bound: Robot1 N4937, Flakey

New plan produced: 4

PLANHEAD: P4906
SPLIT: C4903

Parallel branch:
GOAL: P4979 (CLEAR Blockl-N4348)

Parallel branch:
GOAL: P4931 (CLEAR Blockl-N4348)

Parallel branch:

SPLIT: C4945
Parallel branch:

GOAL: P4950 (CLEAR Objectl-N4833)
Parallel branch:

GOAL: P4947 (CLEAR A)

JOIN: C4946
PROCESS: P4953 Fuel-Puton.Prim A Objectl-N4833 Flakey 15.

GOAL: P4956 (CLEAR B)
JOIN: C4908
PROCESS: P4957 Gov.Puton.Prim Blockl-N4348 B Flakey Numericall-N4794

D Checking constraints.
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Constraints satisfiable.

Checking for phantom: P4979 (CLEAR Blockl-N4348) 0
Success: node P4979 changed to phantom.
Checking for phantom: P4931 (CLEAR Blockl-N4348)
Success: node P4931 changed to phantom.
Checking for phantom: P4950 (CLEAR Objectl-N4833)
Adding PRED constraint for predicate: CLEAR Length: 4.
Success: node P4950 changed to phantom. S
Checking for phantom: P4947 (CLEAR A)
Success: node P4947 changed to phantom.
Checking for phantom: P4956 (CLEAR B)
Success: node P4956 changed to phantom. ->

Found 0. conflicts.

The planning succeeds at the fourth level because the fuel goal can be met as long as block D

(which is size 5) is chosen for moving onto B. The critics notice this, make the instantiation,

and produce the final plan.

Planning at level 4. 5
recursion succeeds, applying critics
Checking constraints.
Constraints satisfiable.
Adding SAME constraint: these two bound: Numericall N4794, um-alloc N4993
Adding INSTAN constraint: these two bound: BlockI N4348, D
Adding INSTAN constraint: these two bound: Objectl N4833, TABLE

Short version of final plan (use DISPLAY to view):
PLANHEAD: P4906
PROCESS: P4953 Fuel-Puton.Prim A TABLE Flakey 15.
PROCESS: P4957 Gov.Puton.Prim D B Flakey 10.

Found 0. conflicts. %
recursion succeeded
SIPE solved problem, use DISPLAY to see plan.
Evaluation took 2.62 seconds of elapsed time

The evaluation time was taken from a run in which the tracing was not on. The type of trace Pprinted here takes several more seconds.

This example shows how numerical reasoning is incorporated with the constraint-posting %

framework of SIPE. The system automatically computes level predicates, and backtracks

appropriately when they fail. It is also able to choose instantiations for planning variables

that will make level predicates true, and reason about the range a value must lie in when

variables are not instantiated. Ilow these capabilities are implemented is described in the

next section. This example again provides a scale for measuring our claims of efficiency.
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This problem, with its backtracking and numerical reasoning, takes less than 3 seconds on a

Symbolics 3600.

10.4 Temporal Reasoning

SIPE's temporal reasoning capability is in the early stages of development, and has only

recently been added to the system. While there has not been time to fully implement our

design, it is still possible to solve interesting problems that go beyond what previous classical

planners can do, as the following example illustrates. To test temporal reasoning, we assume

that the time required to move a block is a function of its size. SIPE's representation allows

encoding of a Wait operator, which allows the system to meet temporal goals by simply

waiting for a certain length of time. Given problems that require actions to take place within

prescribed time windows (e.g., an action could have a precondition stipulating that the time

must be within a certain range), SIPE is able to pick blocks and operators correctly, producing

a valid plan by inserting Wait actions. A trace would be similar to the one given for the fuel

problem.

At present, the user has to make proper use of level, produce, and consume predicates

with numerical variables and constraints in order to accomplish whatever temporal reasoning

his domain requires. There are designated subclasses of Numerical and Continuous (Time

and Clock). Variables in these classes will be treated as though they represent time, which

means levels will be calculated in a nnadditive manner over parallel actions. In all other

respects, temporal quantities are just like any other numerical quantities. Temporal values

will generally be lists of numbers instead of integers, to take advantage of the TUS-like syntax.

The starting time of an action can be given by a (rcl predicate. Absolute times can also be

re)resented by lcrcl predicates. l)urations of actions can be specified by consume predicates.

In the real world, one cannot generally produce time, but SIPE does not prevent the user

from so using consumable resources.

We have not yet inipleniented some of our designs for temporal reasoning. It would

be fairly straightforward to iniplenient a much more useful syntax for the types of temporal

reasoning most often encountered. For example, actions could have start time and end time

slots that contained variables wit h numerical constraints on them. It would be easy to convert

these to goal nodes or precondition nodes containing the appropriate leel predicates to ensure
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that the constraints on these slots would be met and maintained. Similarly, duration slots

could easily be converted to appropriate consume predicates and be used to compute ending

times from starting times. Such "syntactic sugar" would make the system much easier to

use. In addition, it would be useful to build defaults for temporal values into the system.

For example, the system might assume that one action would start immediately after the

preceding one ended unless constraints on its starting time indicated otherwise.

Most of the algorithms we have designed for reasoning about time during parallel concur-

rent actions have not yet been implemented. For example, the start and end times of actions

(i.e., the values of level predicates on temporal variables in the effects of actions) could be

interpreted as ordering actions with respect to other actions. All the functions in SIPE that
traverse a plan (e.g., plan critics, the truth criterion) could then utilize this ordering infor-

mation to eliminate some possible orderings of parallel branches. While it is clear how this

could be done, lack of time has postponed implementation.

10.5 Manipulating Numerical Quantities

In the fuel example, we saw the system using the representation previously described for

numerical quantities. In this section, we describe tile algorithms that perform these calcu-

lations. The unification algorithm must take numerical constraints into account, the truth

criterion must handle level predicates specially, and the plan critics must check for problems

with numerical variables. As one would expect, variables and nonlinearity again introduce

complications for which SIPE provides heuristics.

Unifying two variables with most of the numerical constraints described in this chapter

is straightforward. There are two complications: function constrainuts on variables, and tie

inefficiency of constantly recomputing tile numerical range iniplied by all tie numerical con-

straints on a variable. When uninstantiated numerical variables have function coistrai ts,

SIPE computes a range for the value of the variable by calling the function on all tle possible

instantiations that are currently consistent. In large domains, this may have to be replaced

with some estimate that is easier to compute.

We have already stated that summary-range consiraints are used to avyOid reConpiuta-

tion of numerical quantities. These constraiuts su mniarize in oe fi i1i(irical ra(ge all tei
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consequences of the other constraints on a numerical variable. However, there remains the

question of deciding when to recompute a summary-range which will change as planning pro- ]

gresses and more constraints are added and more instantiations made. In tile case of adding

constraints, we solve this by recomputing tile summary-range of a variable when constraints -

are added to the latter. This is not done every time a constraint is added, but rather, every

time a set of constraints is added. For example, when matching a precondition, the system O

waits until all the numerical constraints from the match are added and then recomputes all

the numerical variables in the precondition before proceeding. In the case of instantiating

variables, the problem is harder. Our solution is to include in the summary-range constraint

not only the current value of the allowable range, but also a list of variables upon which this 0

computed result depends. If any of these variables are instantiated, the summary-range is

recomputed. This is done once every planning level by the plan critics that check resource

allocation and constraint satisfaction.
0

We have already described the responsibilities of the plan critics regarding numerical
..

variables. They must recompute summary-range constraints appropriately. They must also

guarantee that predicates having continuous variables as arguments will be true at particular

times. Because these values change over time, the system cannot post pred constraints on

the variables. The constraint satisfaction critic therefore checks all phantom and precondi-

tion nodes in the plan that contain level predicates to ensure that the requirements on the *.

continuous variables are still being met. '

The truth criterion must determine the truth of a Icvcl query predicate with a continuous S

variable as an argument where the quantity corresponding to this variable had been pro- a

duced and consumed over time. The algorithm is simple for linear plans whose nonnumerical

variables are all instantiated. A range is computed within which the value of the continuous

variable must lie. As the truth criterion regresses over actions with produce and consume

effects that necessarily codesignate with the quantity being calculated, it updates the range

being computed to incorporate the production/consumption (which may also be given as a

range). If the regression reaches a node with an effect that is a (cl predicate for the quantity

being calculated, then the regression can terminate as this predicate summarizes all previous P.
production and consumption of this quantity.

As with the nonnumerical truth criterion, variables and nonlinearity both introduce prob-

lems. As with summary-range constraints, there is both a store versus recompute dilemuma
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and a problem with recomputation after further planning renders old computations obsolete.

To solve these problems, the system stores the results of computing a level simply by posting

a level predicate, with the value of the computation as an argument, on the deduced-effects

list of the plan node from which the level was computed. This causes the system to behave

exactly as we want without the need to continuously recompute levels, since the truth crite-

rion will not regress past this predicate. Because these specially added level predicates are

.- listed as deduced effects, they are not copied down to a lower planning level, thus affecting

-" their necessary recomputation after the plan has been further specified.

The introduction of variables means that the level/produce/consume effect being pro-

cessed by the truth criterion may only possibly codesignate with the query predicate (i.e.,

the tuple of nonnumerical arguments possibly codesignate with the corresponding tuple in

the query predicate). Note that the list of possible establishers for the query predicate will

contain level, produce, and consume effects. There is a search space that could be explored

by the truth criterion: investigating possible codesignation constraints that would allow cer-

tain produce/consume effects to match the query predicate in order to make it true. SIPE

does not search this space. Instead it divides the list of possible establishers into equivalence

classes of predicates that must codesignate. When a new possible establisher is added, it

is grouped with others that necessarily codesignate with it. After the regression has ter-

minated, the system then computes a range for the continuous value from each equivalence

class (combining the productions and consumptions in the class). Thus one lcvl predicate

that is a possible establisher is computed from each equivalence class. Note that there are no

clobberers that accumulate: level, produce, and consume predicates are always unnegated.

Whether a possible match is an establisher or clobberer depends upon how the numerical

values in the query and possible match compare.

The effect of this heuristic is that SIPE will assume that lcvtel, producC, and consuitc

predicates describe different quantities whenever possible. Thus it is the responsibility of the

user to assure that the necessary same constraints are posted when these pretlicates d(escribe,

the same quantity. Basically, abstract operators must encode whether or nol (ifferetit remou rp

consumption actions at a lower abstraction level are consunig he saine resource or 1In. I li,

resource can still be an uiinstantiated variable, but the same variale should he us( ii lie

two different actions if they are consuming the same resource. In our problem (hmnai is. li

has been easy to do. This lieuristic has proven quite useful whil, avoi diig a coilii at rial

123 i

Ie

AN --

* ~~~ ~ S tlk, '' *, ' ) '~ ' J. d J < t



.. o s..' .. , " - .-.. o s ... W• . * - S

search.

The last problem is the computation of levels after parallel actions. Our algorithm is I

simple and efficient, but not very powerful. It (foes not reason about different possible

orderings of the parallel actions. It merely computes the minimum and maximum that could

exist after the parallel actions, then uses this range as the result.

10.6 Summary

Resources are a powerful tool that can be employed by the user to represent domain-specific

knowledge concerning the behavior of actions. SIPE provides tools for expressing and us-

ing both reusable and consumable resources within the classical )lanning paradigm. These

tools include the ability to reason about numerical quantities, that allow representation of ,F

a significant new class of problems. No previous classical planners have used resources or

numerical quantities. While the system's ability to express temporal and numerical problems

does not approach that of systems designed for that purpose, it does provide new capabilities

that retain the advantages of classical planners. This results in a more natural and graceful

interaction with users and more efficient problem solving, in addition to the power to express

an important new class of domains.
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Chapter 11

Replanning During Execution
I

In real-world domains such as controlling a mobile robot, things do not always proceed as

planned. Therefore, it is necessary to monitor the execution of a plan and to replan when

things do not go as expected. In complex domains, it becomes increasingly important to

use as much as possible of the old plan, rather than to start all over when things go wrong.

The problem is the following: Given a plan, a world description, an(1 some appropriate

description of an unanticipated situation that occurs during execution of the plan, our task is

to transform the plan, retaining as much of the old plan as is reasonable, into one that will still N

accomplish the original goal from the current situation. This process can be divided into four

steps: (1) discovering or inputing information about the current situation; (2) determining

the problems this causes in the plan, if any, (similarly, determining shortcuts that could be

taken in the plan after unexpected but helpful events); (3) creating "fixes" that change the

old plan, possibly by deleting part of it and inserting some newly created subplan; and (4)

determining whether any changes effected by such fixes will conflict with remaining parts of

the old plan.

The first step involves the challenging task of determining how to generate correct pred-

icates from information provided by existing sensors (e.g., the pixels from the camera or the

range information from ultrasound). This difficult problem, which is the subject of several I
other volumes, is of crucial importance to endowing a robot with a high-level l)lanning ca-

pability. However, it is beyond the scope of our discussion of planning systems. Here, we

concentrate on what a planning system might do wit I the predicates that are returned from

the world (also a necessary part of the overall solution). We assume that new information
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given to the planning system in the form of predicates it understands. Fhe final three steps

all involve determining which aspects of a situation later parts of the plan depend upon, and •

which effects listed in the original plan are still true (and which new ones should be added).

The latter problem is an instance of the standard truth-maintenance problem.

In many domains, it may often be important to expend considerable effort in checking

for things that lnight have gone wrong besides the unexpected occurrence already noticed.

(Perhaps it is just the tip of the iceberg.) There is a substantial tradeoff involved here, as -

interpreting the visual input of unanticipated scenes may be expensive. However, we do not

examine this problem either. In line with the classical planning assumption of a perfect world --

description, we assume that nothing has gone wrong besides reported errors and effects that

can be deduced from them. The problem of uncertain or unreliable sensors or information is ex

also largely unaddressed (although SIPE can specify that some predicates and variables are

unknown).

The issues involved in solving these problems will become apparent as SIPE's replanning k j

capability is described. While SIPE is not able to monitor the world directly, it can replan

after it has been provided with arbitrary descriptions of the world in its own language. In

many cases, it is able to retain most of the original plan by making some modifications, S

and is also capable of shortening the original plan when serendipitous events occur. This

capability significantly extends those of previous classical planning systems by exploiting the

rich structure in tile system's plan representation and integrating the replanner within the

planning system itself. This integration provides a number of benefits, of which the most 0

important follow: the replanner uses the efficient truth criterion to discover problems and

potential fixes quickly; the deductive causal theory is used to provide a reasonable solution to

the truth maintenance problem described above; and the planner can be called as a subroutine

to solve problems after the replanning module has inserted new goals into the plan. The

replanner does use serendipitous effects to shorten the original plan in certain cases. and

effectively eliminates the fourth step above as a problem by generating only those "fixes"

that are guaranteed to work.

In general, optimal recovery from an arbitrary error poses an intractable )rol)lem. Often

very little of the existing plan can be reused. One can always fall back on solving the original

problem in the new situation, ignoring the plan that was being executed. Since the l)rol)len

is so difficult, one would not expect very impressive performance, in ternis of producing 0
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Figure 11.1: Control and Data Flow in SIPE's Replanner

optimal plans that reuse the original plan, from a domain-independent replanner. Producing

more optimal plans requires domain-specific information for dealing with errors. In many

domains, the types of errors that are commonly encountered can be predicted (e.g., the robot

arm dropping something it was holding, or missing something it was trying to grasp).

The replanning part of SIPE tries to change the old plan, using heuristics to retain as

much of it as possible in certain situations. An important contribution is the development of

a general set of replanning actions that are used to modify plans. These are used both in the

replanner and in the plan critics. The also have the potential for facilitating the addition of

domain-specific knowledge about error recovery, since the user could specify which replanning

actions to take in response to certain anticipated errors.

11.1 Overview of SIPE's Execution-Monitoring System

Figure 11-1 shows the various modules in the SIPE execution-monitoring system. The solid

arrows show which modules call which others. The broken arrows show the flow of data and

information through the system as it replans for an unexpected situation. These arrows are

labeled with a description of the data being passed.
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During execution of a plan in SIPF1 some person or (0111pulr \'sl em lmonitoring the ,-

execution can specify what actions have been performed and what changes have occurred

in the domain being modeled. The systemi changes its original world model permanently,

so as to reflect the effects of actions already performed. At any point during execution.

the .(cutiori monitor will accept two types of in formati on about the domain: an arbitrary %

predicate wlose argmiients are ground instances, that is now true, false, or unknown; and a

local variable name that is now unknown. SIPE first checks whether the truth-values for the

new predicates differ from its expectations. and, if they do, it applies its deductive causal

theory to deduce more changed predicates.

Once the description of the unexpected situation has been accumulated, the execution

monitor calls the problern rccognizr, which returns a list of all the problens it detects in

the plan. The g9ricral rplanncr is then given the list of problems found by the problem

recognizer and tries certain replanning actions in various cases, but will not always firid a

solution. The general replanner changes the plan so that it will look like an unsolved problem

to the standard planner in SIPE (e.g.. by inserting new goals). After the replanner has dealt

with all the problems that were found, the planner is called on the plan (which now includes

unsolved goals). If it produces a new plan, this new plan should solve correctly all the

problems that were found and is given to the execution monitor.

11.2 Unknowns

Unknowns are not present in most classical planners, which generally assume complete knowl-

edge of the world. Having unknown quantities requires fundamental changes down .o the level

of the truth criterion. If the truth-values of critical predicates are unknown, SIPE will quickly

fail. None of the operators will be apllicable, since neither a negated nor an unnegated pred-

icate in a precondition will match an unknown predicate (i.e., one with a truth-value of

unknown). Operators can require predicates to be unknown as part of their precondition,

which is useful when there are appropriate artions to take in uncertain situations. A SIPE

operator might produce a plan with an action to perceive the unknown value, followed by a

conditional plan that specifies the correct course of action for each possible outcome of the

perception action. The deductive causal theory can deduce unknown predicates.

The ability to specify variables as unknown is simply a tool l)rovided by the system that
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A will presumably be useful in some domains, particularlv i, a Imobihl robot doniain. The idea

behind this tool is that the location of an object may become unknown during execution.

Rather than make predicates unknown, which may cause the application of operators to fail.

we simply say that the variable representing the location is instantiated to the atom unknown,

rather than to its original location. All predicates with this variable as an argument may then

still match as if they were true. Thus, the system can continue planning as if the location

were knovn. The only restriction is that no action can be executed that uses an unknown

variable as an argument. When such an action is to be executed (e.g., go to location I), then

the actual instantiation of the variable must be determined before the action is executed

(possibly through a perception action). Note that it would be incorrect to continue planning

if the truth-values of important predicates depended on the instantiation of the location

variable. This tool should only be used when it is appropriate: It is the responsibility of the

user not to use the unknown variable if pi, dicates depend on the latter's value.

11.3 Interpreting the input

The sensory system monitoring the execution need not report all predicates that have changed,

since many of these may be deduced by SIPE. The system does not plan perception actions

to check for additional unexpected predicates, effectively assuming that only the minimal

changes consistent with the input and the causal theory have occurred. Alternatively, we

could decide on some basis (which would have to be provided as part of the doinain-specific

description) just how much effort to expend on perception actions to discover other possible

unexpected occurrences. For example, if we are told that (On A B) is not true when we %

expected it to be. we might want to check to see if B is where we thought it was. As it, is.

SIPE will simply deduce that B is clear (if no other block is on B) and will not try to execute

actions to make further checks with regard to thew world. This latler procedure could be very

expensive for a mobile robot in the absence of good domain-specific knowledge about what

is worth checkinug.

There is a problem with unexpected effects in deciding how they interact with the effects .*

of the action that was currently being execu ted (e.g., did they htippen hefore, (hiring. or after

the expected effects?). Our solut ion to this problmn is to ass1iuie that Ih, action tOOK place

as expe ,ted and to simply insert a "Mot her Nat ro" act>ion ;iftr it that is hpresiuui((d to bring ,%
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about the unexpected effects (including those deduced). The system assumes that any effects

of the action being executed that did not actually become true are either provided or can I

be deduced from the information given. This solution interfaces cleanly and elegantly with

the rest of the planner and avoids having to model the way in which the unexpected effects

might interact with their expected counterparts.

11.4 The Problem Recognizer

Having just inserted a Mother-Nature node (MN node) in a plan being executed, SIPE must

now deternine how the effects of this node influence the remainder of the plan. There are

two aspects to this: the first involves planning decisions that were based on the effects of this

node, and the second involves deductions about the state of the world that were based on

those effects.

The second aspect is essentially a truth-maintenance problem. Many effects deduced later

*, in the plan may no longer be true if they depended on predicates that are negated by the

MN node. The validity of such deductions must be checked so that the remainder of the .'.

plan represents the state of the world accurately. Since it is assumed that processes work

as expected whenever their precondition is true and all phantoms that should be protected

are true, only deduced effects need to be checked for their dependence on unexpected effects.

(The replanner will solve problems having to do with preconditions and phantoms that are

not true). Since deduction is not expensive in SIPE (because of the controls described in

Chapter 6), the truth maintenance problem is solved simply by redoing the deductions at

each node in the plan after an MN node. Even this is avoided in simple cases, because the

system carries a list of changed predicates as it goes through the l)lan; if they all become true

later in the plan (without any deduced effects changing in the interim), then the execution
.o

monitor need not look at the remainder of the plan (either for redoing deductions or for

finding problems).

The problem recognizer finds all problems in the remainder of the plan that might be K
caused b' the effects of the MN node. Since deductions are correctly updated before the P

problem recognizer is called, it will also find any problems caused by them. The problem

recognizer also notices possible serendipitous effects. Because of the rich information content

in the plan representation (including the plan rationale), there are only six problems that
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Figure 11.2: Blocks World Problem and Plan

must be checked. All occurrences of the six problems listed below are found by the problem

recognizer. These problems constitute the only things that can go wrong with a plan in SIPE

after addition of a MN node at the current execution point. The block-worl problem in

.

Figure 11-2 will be used to show an example of each type of problem.

9 Puy-pose not achievcd.

If the MN node negates any of the main effects of the action just executed, there is a problem.

The main effects must be reachieved. If, during execution of the first Puton node in the plan

in Figure 11-2, either -(On B C) or (On B D) is given as an unexpected effect, then the NN

node inserted after the lPuton node will negate the purpose of Ihe Puton node th~ereby

resulting in an instance of this type of problem.
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9 Previous phantoms not maintained.

SIPE keeps a list of phantom nodes that occur before the current execution point (including

those on parallel branches), and whose protect-until slot requires their truth to be maintained.

If the MN node negates any of these, tihen there is a problem. The phantoms that are no

longer true must be reachieved. Suppose that during execution of the first Pickup node in

our example, -i(Clcar C) is given as an unexpected effect. This type of problem will then

occur, since the phantom node (Clear C) has a protect-until slot (not shown in the figure)

which effectively points to the first Puton node, but the phantom has been negated by the

M N node.
S

e Process node using unknown variable as argument.

If a variable has been declared as unknown, then the first action using it as an argument

must be preceded by a perception action for determining the value of the variable. If the

B in the example l)lan were the instantiation of the variable blockl (instead of being given

as part of the problem), and unknown blockl were entered during execution of the first

Pickup action, then this type of problem would occur with the immediately following Puton

action, since it would be applied to an unknown argument.

e Future phantoms no longer true.

A phantom node after the current execution point may no longer be true. It must be changed

to a goal node so that the planner will try to achieve it. In the sample plan, suppose that

(On D B) were given as an effect during execution of the first Puton node. This type of
problem would then occur with the last (Clear B) phantom node in the plan, since it would

no longer he true when it is expected to be.

e Future precondition no longer true.

A precondition node after the current execution point may no longer be true. In this case, we

do not want to reachieve it, but rather po p up the hierarchy and perform some alternative

action to achieve the goal at that level of the hierarchy. Because the sample plan contains

no precondition nodes, we consider an example of this type in the travel-planning domain.

Suppose there is an operator for John's taking a taxi to the airport. which has a precondition
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that John's car is inoperative. If, during execution of the first part of the plan, SIPE is told

that John's car is not broken, this type of problem will occur. In this case the reason for

taking a taxi to the airport has been invalidated, and the general replanner will pop up the

hierarchy and apply a different operator to get John to the airport (presumably driving his

car).

e Paralli postcondition not true.

All the parallel postconditions may no longer be true at a join node. (This could be handled

by maintaining phantoms, but is more convenient to handle separately.) In this case, we must

insert a set of parallel goals after the join node, one for each untrue parallel postcondition.

The parallel postconditions of the new join node will be the same as those on the old join

node. In the sample plan, the last join node will have both (On A B) and (On B C) as

parallel postconditions (since they were in parallel originally). Suppose that (On B Table)

were given as an effect during the execution of the last Puton node in the plan. This type of

problem would then occur, since the parallel postcondition of (On B C) would no longer be

true.

Because of the way plans are encoded in SIPE, these are the only things that need to

be checked when determining whether an MN node affects the remainder of a plan. This

illustrates how the rich structure of plans in SIPE helps produce efficient problem detection.

lowever, processes (actions) are assumed to work whenever their precondition is true and

when all protected phantoms are true. This should not be a burden on the user, since all

such necessary conditions should be encoded as either preconditions or goals, in any case.

There is currently no check for loops caused by the same error happening repeatedly, with

the same fix being proposed by the general replanner each time. Various simple checks could

easily be ad.ed if this were a problem.

In addition to the above problems, possible serendipitous effects are also noted and in-

cluded in the list of problems by the problem recognizer. If tile main effect of sone action

later in the plan is true before the action is executed, then that is noted as a possible place

to shorten the plan. (This is discussed in more detail in tlie next section).
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11.5 Replanning Actions

The eight replanning actions implemented in SIP)E Reinstantiate, Insert, Insert-conditional,

Retry, Redo, Insert-parallel, Pop-redo, and Pop-remove - provide sufficient power to alter

plans in a way that often retains much of the original plan. These are dorrain-independent W

actions, and they form the basis of the general replanner and can be referred to by other 0

parts of the system and by domain-specific systems the user might develop for directing erroi 1%41

recovery. The first seven actions can all be used to solve l)roblems found by the problem

recognizer, while the last is used to take full advantage of serendipitous effects.

Four of the replanning actions change the plan so that it will contain unsolved problems. 5

The intention (see Figure 11-1) is that the plan will then later be given to the normal planning

module of SIPE (possibly after a number of these replanning actions have changed the plan).
U,

The planner will then attempt to find a solution that solves all the problems that have been

corrected in the plan. Any problems in the plan caused by the addition of goals will be dealt

with as part of the normal planning process.

* Insert (nodel node2,)

This action inserts the subplan beginning with nodel (which has been constructed) into the

current plan after node2. All links between the new subplan and the old plan are inserted

correctly. This is used as a subroutine by many of the actions below.

* Insert-conditional (variable node context) "'

This complements the unknown variable feature - it inserts a conditional around the given

node that tests whether the given variable is known. If it is, the given node is executed next; 0

otherwise a failure node is executed. 5

* Rtry (nodr)

The given node is assume(d to be a phantom no(le and it is changed to a goal node so that

the planner will perceive it as unsolved.

Rlo (pr(di<'at nodr conixt)"
13I
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This action creates a goal node whose goal is the given predicate. It then calls Insert to place

this new node after the given node in the plan.

9 Insert-parallcl (node pr(dicates context)

This action essentially does a Redo on each predicate in the given list of predicates and

puts the resulting goal nodes in parallel, creating new split and join nodes. This subplan is

inserted after the given node in the plan. The planner will see these new nodes as unsolved

goals. This action is useful for reachieving parallel postconditions.

9 Rcinstantiate (predicate node contcxt)

This action attempts to instantiate a variable differently so as to make the given predicate true

in the situation specified by the given node. This appears to be a commonly useful replanning

action. For example, it might correspond to using a different resource if something has gone

wrong with the one originally employed in the plan, or deciding to return to the hopper for

another screw rather than trying to find the one that has just been dropped. It is a complex

action that raises many issues that are discussed below.

e Pop-rudo (node predicates context)

This action and Pop-remove are the most complicated of the replanning actions; it is used to

remove a hierarchical wedge from the plan and replace it with a node at the lowest level. Pop-

redo is used when a precondition node is no longer true and another action must be applied at

a higher level. It could also be used to find higher-level goals from which to replan when there

are widespread problems causing the replanning to fail (this is not currently implemented).

The removal of a wedge from a plan is discussed in detail in a following section.

9 Pop-rcrnovc (nodc pr(dicatas context)

This action is used to takes advantage of serendipitous effects to shorten a plan. Like Pop-

redo it removes a wedge, but this action does not insert a node. lowever, hPop-remove is

more conplicated because it is nontrivial to decide whicli wedge to remove. SIIE's heuristics

for this are d[iscussed in the following section on removal of wedges. Briefly, serendipitous

effects ar, ex)loitel only if doing so does not change the rest of tile plan
I
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11.5.1 Reinstantiation of Variables

One replanning action reinstantiates variables witliout claiiging anytlihirg else in the plan.

For example, when getting screws froi a hopper this procedire may be tHie correct response

when you drop a screw - simply execute the same plan, returning to the hopper to pick

up a different screw. However, the general problem is quite complicated. Ihere are any

number of constraints and instantiations on the plan variables from different parts of the

plan. Reinstantiations involve removing some of these and trying to replace them. However,

there are two problems: it is not easy to determine all the consequences that have been

propagated from the old instantiation choice (without implementing a truth maintenance

system on top of the planner); and in general, you must reinstantiate a whole subset of

variables to solve the problem, not just one, and it is difficult to pick the correct subset out

of the huge number of possibilities.

Two different solutions to the latter problem have been tried in SIPE. One solution is to

choose a set of variables using the following algorithm. Consider the variables in the failed

node as possible candidates for reinstantiation. For each one, go up the hierarchy to the
point where the variable was first introduced. This determines a wedge that in some sense

is either causing or signalling the problem. Consider for reinstantiation only those variables

whose instantiations were not forced by choices made inside this wedge. The intuition behind

this approach is that because an instantiation was not forced by this wedge. the wedge itself

may quite likely work without modification on another instantiation of the same variable.

The check for where choices are forced is simple in SIPE, because all constraints (including

instantiation constraints) are posted relative to choice points, and it is easy to determine

which choice points are in a wedge.

In practice, trying to reinstantiate such a set did not work acceptably, so the system no

longer expends effort attempting it. While it may have been a feature of our test problems,

there never seemed to lbe a set whose reinstantiatioti would create a correct plan. Furthermore,

reinstantiating a whole set of variables further exacerbates the first )roblem of dependencies

in the remainder of the plan (as discussed below). The currently implemented algorithm is to

look only for reinstantiations of single variables; this is efficient and evidently powerful enough

to be useful. The Reinstantiate algorithm loops through the arguments of the predicate

given to it. l.,,r each argument that is a planning variable (as opl)osed to an acttual ground

136

%4



instance), Reinstantiate checks to see if there is another instantiation for it that will make

the predicate true. This is cheap and efficient in SIPE, since it merely involves removing

the instan constraint on the variable from the current context (and also from all variables

constrained to be the same as this one), and then calling the truth criterion (which will .J

return possible instantiations) to determine if the predicate is now true. Note that all other

constraints that have been accumulated on this variable are left intact, so only instantiations

that meet all relevant requirements are found.

Since later parts of the plan may depend on properties of a variable's instantiation, a

reinstantiation can potentially introduce a large search space since the plan may turn into

a problem to be solved when these dependencies are updated. While such dependencies are

minimized by only finding reinstantiations that satisfy all constraints (e.g., all requirements

made by later preconditions and phantoms will be satisfied because they are encoded as pred

constraints), they still exist, e.g., different deductions may be made, and the global constraint r,

network may not be satisfiable. To prevent the introduction of a search space, Reinstantiate ..-

is limited by the requirement that it not introduce new problems. If new instantiations are

found, Reinstantiate checks the remainder of the plan to see if any parts of it might be

affected by the new instantiation (in part by using the problem recognizer), and accepts only

those instantiations that cause no new problems. If all new instantiations are rejected, the
old instan constraint is simply replaced. %

The implementation described above opts for reinstantiation only when it is likely to be

the correct solution. This is consistent with SIPE's running efficiently on the problems it does I

solve. Alternatively, new instantiation3 could be accepted even though they caused problems

- as long as the problems are less severe than the problems incurred by keeping the old >,e

instantiation. Since SIPE has no way of comparing the difficulty of two sets of problems, we

do not do this. However, it would not be difficult to change SIPE to explore tile search space S

so introduced if a domain warranted it. There are also ways to partially lift this restriction

at the cost of a moderately increased search space (though the tradeoffs involved appear to

depend on the domain).

As an example of the use of Reinstantiate, let's consider the above-mentioned problem of

dropping a screw. Suppose that screwl is a planning variable, while S1 and S2 are particular

screws. The plan being executed could have scrcwl instantiated to SI. a lhantom to be U
maintained with the goal of (hInoivnLoc crcwl), an(l a process node for moving scrcwl
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to achieve (At screw1 Workbench). During execution of the latter node, SIPE is told that

the finger separation of the arm is zero. From this it could deduce (among other things)

-(KnownLoc screwl) and -,(At scrcu,1 Workbench). The problem of not achieving the

purpose of the process node will cause the replanner to insert a goal node in the plan for

reachieving (At screwl Workbench). Without Reinstantiate, this would involve finding the

location of SI and moving it to the workbench (since screwl is instantiated to Si) - which

may be a very hard problem (as anyone who has ever dropped a screw is aware). The problem

of not maintaining the phantom node could trigger Reinstantiate on the KnownLoc predicate,

which would result in screwl being reinstantiated to S2 (whose location is known). This

would introduce no new problems, and SIPE could proceed to get a screw at the workbench

by getting S2 from the hopper.

11.5.2 Removing Wedges from Plans
r

When redoing a precondition failure, it is easy to determine the wedge to be removed, since

precondition nodes are copied down from one level to another. The top of the wedge to be

removed is the node that was expanded to initially place the given precondition node in the

plan. However, removing a wedge when attempting to take advantage of a serendipitous

effect, as in Pop-remove, is more complicated because it is nontrivial to decide which wedge

to remove. We discuss SIPE's algorithm for this choice below.

Removing a wedge, for whatever reason, in practice splices out only the lowest level of the

wedge, as planning will continue only from this level. In the Pop-redo case, the subplan that

is removed at the lowest level is replaced by a copy of the goal or choiceprocess node that

was at the top of the wedge (using the Insert replanning action). This is seen as an unsolved

goal by the planner, which automatically checks during further planning whether expansions

of this node cause problems later in the plan. There is one potentially serious complication:

Various constraints may have been posted on the planning variables because of decisions

made in the wedge of the plan that has been [effectively] removed. Fortunately, because of

SIPE's use of alternative contexts, it is easily solved. This problem is solved by removing

from the current context all the choice points that occurred in the wedge of the plan that

was removed. This new context is given as the context argument to future planning actions,

and no further action need be taken. This results in ignoring precisely those constraints that
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should be ignored. 0"

Let us consider the example mentioned earlier of John planning to take a taxi to the

airport when his car is broken. The operator for taking the taxi could have a precondition

--,(Has John autol) V (Broken autol ). (This will match .John's not having a car or his car ,

being broken.) This operator is applied to solve the goal node (At John Airport) at a high

level in the plan, causing a precondition node for the above precondition to be inserted into

the plan and copied down to all lower levels of the plan. Suppose that, during execution,

-,(Broken autol) is entered as an unexpected effect during execution of a process before the

precondition node. This node is a future precondition which becomes false, and the general

replanner will apply Pop-redo to the problem. The wedge that is deleted has the goal node

(At John Airport) at the top. This may be a very large wedge if its lowest level is as detailed

as "find the phone book, look up taxi in the yellow pages, dial a taxi company," etc. At the

lowest level, the whole plan of finding a taxi and taking it to the airport is spliced out and

replaced by an (At John Airport) goal node. When SIPE's planner is later called on this

plan, this goal node may be solved by John's driving his car to the airport.

Let us now turn our attention to the problem of choosing a wedge to remove when there

is a serendipitous effect. There may be various wedges that are candidates and, as with

Reinstantiate, these candidates may cause problems later in the plan if they are removed.

Pop-remove currently handles this case in the same way it handles Reinstantiate. Namely, it

removes a wedge, checks to see if this causes any problems, and, if there are any, replaces the

wedge. Thus, serendipitous effects are exploited only if doing so does not change the rest of

the plan. This is a trade-off like the one discussed previously. SIPE again opts for efficiency,

but could easily be changed to explore the additional search space of replanning after the

removal of wedges.

Pop-remove eliminates any search by generating only one candidate wedge for removal.

It gives up taking advantage of the serendipitous effect if this wedge does not work. The

candidate wedge is generated by following ancestor links from the node given to Pop-remove

(which supposedly has a purpose that has become true serendipitouslY), as long as some

main effect of the candidate node is made true by one of the predicates in the list of given

predicates that have unexpectedly become true. The candidate node found in this manner

determines the candidate wedge. The wedge is rejected immediately unless all its main effects

are true in the given list of predicates.
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l (At John Airport)

(At John Airport)

2 (At Taxi Airport)

(At John Airport)
3 (At Taxi Airport)

-(Iave John Money)

Figure 11.3: Hierarchical Wedges with a Common Last Action

Figure 11-3 uses the example of getting John to the airport to help illustrate this selection

process. This example depicts a frequently occurring case in which the last action at one

level of a wedge achieves the main effect of every level above that. For example, at Level 1

the goal is only to get John to the airport. At Level 2, after the choice has been made to

take the taxi, the last node will achieve getting both John and the taxi to the airport. If

Level 3 plans the mechanics of leaving the taxi, the last node there might contain all these

higher-level effects as well as the thinner state of John's wallet.

The above selection process requires that all goals generated at a higher level and achieved

in the candidate wedge be achieved before the wedge becomes a candidate, while goals gen-

erated at a lower level than the top of the candidate wedge need not have been achieved

serendipitously. Thus, for Wedge 2 to be selected in Figure 11-3, the serendipitous effects

must include (At John Airport) from the higher level (as well as (At Taxi Airport)) but

need say nothing about how much cash John has since that is at a lower level. (It is assumed

that, as long as the highest-level goal is achieved, we do not care about the lower-level goals

that were necessary to bring this about.) The main effects of higher-level nodes that are

achieved within a candidate wedge are easily checked because they are copied down as effects

of the node that achieves them. Thus, checking to verify that all main effects of the candidate

wedge are true ensures that all important higher-level effects will be true. In the example as

shown, Wedge 2 can never be selected by SIPE's algorithm since Wedge 1 will work whenever
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Wedge 2 does. However, in another example the effects of \Wedge I might be achieved at

Level 2 before Wedge 2, so that Wedge 2 might then l)e selected.

!.4

11.6 Guiding the Replanning

The replanning actions of the preceding section form the basis for the general replanner,

which can be operated interactively as well as automatically. The general replanner takes a

list of problems as well as possible serendipitous effects from the problem recognizer, and calls

one or more of the replanning actions in an attempt to solve each problem. Before attacking

each problem, it first checks that the problem is still a problem, since responses to previous K

problems may solve many problems at once (e.g., removing a wedge from a plan may remove %

many problematic nodes).

If the problem is a purpose that is not being achieved, the system tries a Redo, which

inserts the unachieved purpose as a goal node after the Mother-Nature node. If the problem

is a previous phantom not being maintained, the replanner first tries Reinstantiate and, .5

if that fails, it calls Retry. The idea is that, if there is another object around with all

the desired properties, it would be easier to use that object than to reachieve the desired

state with the original object. If a process node has an unknown variable as an argument,

Insert-conditional is called. If a future phantom is no longer true, Retry is called. As with

maintaining phantoms, Reinstantiate may be more appropriate, but, in both cases, this

depends entirely on the domain; thus the selection here is arbitrary. For preconditions that

are not true, the general replanner first calls Reinstantiate and, if that fails, calls Pop-redo.

If parallel postconditions are not true, the general replanner calls Insert-parallel with the

appropriate parallel goals.

Once every problem has been addressed according to the above algorithm, the original

plan has been modified into a problem that can be given to the standard SIPE planner. There

is a whole search space of modified plans that could be given to the planner (e.g., choosing

different wedges to remove, etc.). Currently, the modified plan constructed above is the only

one in the space of possible modified plans for which the replanner invests effort. If this )lan

cannot be solved by the planner, the the replanner attempts to solve the original problem

in the current situation. The reasons for this are discussed later in this chapter. One major

reason is that this search space is combinatoric and it is not even known if the modified plans
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are part of a valid solution, while solving the original problem at least will find a solution if

one exists.

While a general replanning capability is a significant achievement, one cannot expect very P

impressive performance from a replanner that does not have domain-specific information for

dealing with errors. For example, whether or not Reinstantiate is likely to succeed will be

dependent on the domain. The automatic replanner makes reasonable guesses at what might

be a good choice in the domains on which SIPE has been tested. Since it merely chooses a

replanning action for each type of problem that is found, it is very simple and could easily

be rewritten for different domains.

11.7 Examples

This section presents two simple examples of SIPE monitoring the execution of a simple

plan, then replanning when things do not go as expected. SIPE has been tested on larger

and more complex problems than those presented here. Our examples involve a standard

block-world with On and Clear predicates and a Puton operator. as described in Chapter

3. The user inputs only what is explicitly mentioned in boldface below; everything else v

is generated automatically by the system. The first problem was constructed to show the

successful use of the Reinstantiate replanning action, and the second shows how the system

inserts a newly created subplan during the replanning process.

Figure 11-4 shows the initial world state and the original problem. The problem is to get

A on C in parallel with getting any blue block on any red block. In the initial world BI and

B2 are the only blue blocks (they are both on the table) and RI and R2 are the only red

blocks (R1 is on BI and R2 is on the table and clear). Since A and C are both clear initially,

SIPE finds (in one second) a two-action plan of putting A on C in parallel with putting B2

on R2, as shown in Figure 11-5.

This plan is then given to the execution monitor module of SIP'E, which asks if P197

or P168 is to be executed first. The user types P197 and the system asks for unexpected p

effects. In this case the user types (On D R2) to show one unexpected effect, namely D

has suddenly appeared on top of R2. This creates a MN node after P197 which also has

the following effects deduced by the system: (On D Tablc) A -(C(ar R2). The problem
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Fignre 11I.1: litial Blocks \\'orldi and P roblern to be Solvedl

P rocess: 1l9 7
Phantom: 1'191 Action: Putoni.Jrim
Coal: (Clear A) Effects: (Oil A C)

Deduce: (Clear 13)

-,(Oil A 13)
-hrtm '9 ( Clear C)

Coal:(Cler C)Protect-until: l~iirpose

Process: M~68
Phiantomi: 1(165 Action: Putonprim

Coal: (Clear 1R2) Effects: (Oil 132 1R2)
Deduce: -(Clear 112)

-'(On 132 la1)l1e)
Phantom: 1) 162 Protect-until: J'tirpose
Coal: (Clear 132)

Fligtiire 11 .5: lInitial PMa il Prod icedl by SINP I
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Executed: PCeat197 C

Action: Puton.1prini Executed: P>350
Effects: (On A C) Action: Mother.Nature

Deduce: (Clear B) Efcs O 2

-,(O nl A B) Deduce: ,(Clear R.2) %

-,(lea C -,(Oin D Table)

, Process: P 168
Action: Puton.prim
Effects: (On B2 111)

Deduce: -- (Clear R.1)

-(On B2 Table)

Figure 11.6: New Plan Produced for Continuing Execution

recognizer is called and it finds only one problem, namely the phantom node P 165 in a parallel

branch was being maintained but is no longer true. This is given to the general replanner

which first tries Reinstantiate. This succeeds as the objectl variable in the phantom node call

be rebound to R1 without causing any new problems in the plan. The plan in Figure 11-6 is

passed from the planlning module back to the execution monitor (without showing phantom

nodes). P168 is then executed without any unexpected effects and the goal is achieved. Note

that the original plan was retained in its entirety and that B2 was placed onl RI instead of

R2, thus achieving the original goal of getting A on C and any blue block onl any red block.

The second problem is the same as the first, except that tile variable rcdblockl is con-

strained not to be R1 (by specifying IS NOT R1 in the original problem). The original plan

produced by SIPE is the same, as is the unexpected situation input by tile user. The prob-

lein recognizer again passes the same problem to the general replanner. This time SIPE

tries Reinstantiate and fails (since R2 is the only other red block), so it calls Retry, which

causes the (Clear R2) phantom in Figure 11-5 to be made into a goal. The planner Solves

this by producing a plan that puts D back onl the table before B1 is placed oil R2. The

subplan shown in Figure 11-7 replaces the reachieved phantom node, oil the parallel branch

before the Puton B2 R2 node in F~igure 11-.5. Without further unexpected events, tihe plan

so constructed then executes correctly to achieve the original goal. Alternatively, more unex-
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Goal: Process: P4-13
(Clear Table) Action: luton.prim

Effects: (On D Table) Phantom: P450
Deduce: (Clear 112) Goal: (Clear R2)

Phantom: P437 -(On 1) R2)
Goal: (Clear D)

Figure 11.7: Subplan for Replacing Phantom 1P165

pected occurrences could be given during execution of the newly constructed plan, and SIPE

would again go through a similar loop of finding and fixing problems until the original goal

is achieved.

11.8 Searching the Space of Modified Plans

SIPE has chosen the course of solving only one modified plan because constantly checking

for problems in planning and correcting them is time consuming, the occurrence of problems

means less of the old plan is being reused, and there is no guarantee that the plan we are

attempting to reuse is part of a valid solution, while starting over guarantees a solution will

be found if one exists.

Problems that were encountered in the mobile robot domain motivated the consideration

of how replanning might backtrack after the initial attempt at replanning fails. The conclusion

we reached in all but the simplest cases is that the process of intelligently deciding where to

replan is too expensive to implement. The general replanner could easily be changed if reusing

some part of the ol plan were a high priority in a particular domain. If the planner fails on one

modified plan, the replanner could generate another by applying different replanning actions

or removing certain wedges that may be causing problems. In addition it could continue to

modify the plan during the planning process. For example, during replanning the planner

may fail to find a solution because a future precondition is no longer true. An alternative to

quilting after such a failure would be to apply Pop-redo again to this prcondition recursively

and continue planning.

The following l)rol)lem indicates some of the dIifficultios. Suppose the l)lan calls for the
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robot to walk down a hall, go through the first door into a conference room, and pick up the

slide projector. Suppose this door is blocked but there is a second door that also leads into -

the same room. Is it possible to replan to use the second door without redoing the part of the

plan that comes after entering the conference room? In general, the problem of navigating to
the slide projector will be different since we have a different starting point from within the
conference room. The plan of what to do after reaching the slide projector should remain

intact, but how can this crucial point in the plan be recognized? In fact, one would like to

find the point in the plan where the paths from the two doors to the slide projector joined.

Of course, things are not actually this simple - for example, the robot may not be able to

reuse any of the original plan if it has used up its batteries going all the way down to the

second door.

It is assumed that the planner knows which node at the most primitive level is causing a

problem in the plan, called the failed node, which in the example might be a node requiring

the conference-room door to be unblocked. To replan this failed node, we would like to replace

a wedge containing it with the node at the top of the wedge and call the standard planner on

the result. If the replanning is to succeed, we must choose an ancestor of the failed node, high

enough in the hierarchy so that its wedge will contain everything that must be replanned,

thus ensuring that we will produce a correct plan. In our example, we would ideally like to

remove a wedge ending at the point where the two paths to the projector joined. Removing

a wedge that ended earlier will produce a modified plan that cannot lead to a solution, while

removing a wedge ending later will cause the system to replan more than is necessary. As one

might suspect, there is no tractable way to guarantee picking the correct wedge. Intuitively,

it would seem that determining the correct wedge involves all the same reasoning that solving

the original problem entails.

SIPE's solution is to resolve the original problem after attempting replanning on one

possible modified plan. Solving the original problem is equivalent to backing up to the largest

wedge and replanning it. Searching the space of possible wedges is expensive because each one

may be as difficult as the original problem. One of the algorithms we considered for choosing

a wedge entailed going back to the first node that had an untried operator, i.e. a node that

represents a choice point at which the system has other (as yet untried) choices of which

operator to apply. This algorithm does not give the desired results because the replanning

often does not need to apply different actions. In the robot domain, it is frequenlly the case
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that the same actions must be done, but in the altered world state used for the replanning,

these same actions will result in different instantiations for many variables. The ideal wedge

for replanning often requires (in our test domains) applying the same operators that were

used in the original plan for a level or two, but then applying different operators at lower

levels. Therefore, applying the above-mentioned algorithm often results in selecting a wedge

that is not high enough in the hierarchy, which dooms the replanning to failure.

Another attractive algorithm is to return to the node which first introduced the variables

that are the arguments of the failed node. In our example, if the failed node involves the

conference room door being blocked, then going up the hierarchy to a level at which the door

is not mentioned gets us to the goal of getting the robot into the conference room. This is

not quite far enough, since the first few actions after entering the conference room need to

be replanned. In addition, this algorithm often returns all the way to the top. It may be

possible to combine the above two algorithms to obtain a more conservative choice of wedges i

(in the sense of assuring success in the replanning). Such an algorithm would first go lip the

hierarchy until all the variables of the failed node disappear, and then continue up until it

finds a node with an untried choice.

I

11.9 Summary V

Given correct information about unexpected events, SIPE is able to determine how this

affects the plan being executed. In many cases, it is able to retain most of the original plan

by making changes in it to avoid problems caused by these unexpected events. It is also

capable of shortening the original plan when serendipitous events occur. It cannot solve

difficult problems involving drastic changes to the expected state of the world, but it does

handle many types of small errors that may crop up frequently in a mobile robot domain.

The execution-monitoring package does this without the necessity of planning in advance to

check for such errors.

Very few classical planners address the execution monitoring and replanning problem.

Those that do have replanners that are considerably simpler and less powerful than that of

SIPE [37]. They also do not allow the input of arbitrary predicates as SIPE does, so the gen-

eral replanning problem never arises. One major contribution of this work is the development

of a general set of replanning actions. In addition to their centrality in the replanner, they
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can be used elsewhere inl the system. The plait critics use them to modify plans, producing

more optimal solutions to problems in the process. One can envision encoding error recovery
knowledge by using these replanning actions.

These actions provide sufficient power to alter plans in a way that often retains much

of the original plait. The success of these mechanisms can largely be attributed to taking

advantage of the rich structure of SIPE's planner and its plans. The relplanner takes advantage

of the efficient truth criterion to discover problem-s and potential fixes quickly, and applies

the deductive capabilities to provide a reasonable solution to the truth maintenance problem.

The fixes suggested by the replanner need involve only the insertion of new goals into the

plan, since calling the planner as a subroutine will solve these goals in a manner that assures

there will be no conflicts with the rest of the plan. SIPE's execution- moni toring capabilities

r make extensive use of the explicit representation of plan rationale. The problem detector

~makes uses of the information encoded in protect-until slots, phantoms, and preconditions

to quickly find all the problems with a plan. Furthermore, it does not remove parts of the

original plan unless the parts are actually problematical. The replanning actions make use

of constraints and contexts whenever they consider removing part of the plan.

From the beginning, the rationale behind SIPE has been to place enough limitations on L

the representation so that planning can be done efficiently, while retaining enough power

to still be useful. This motivation underlies most of the design decisions that have been%

made in implementing the replanning module. For example, Reinstantiate and Pop-remove4.

are limited to prevent the exploration of large search spaces. The major limitations of this

research stem front the assumption of correct information about unexpected events. This

avoids many difficult problems, the most important of which is generating the high-level

predicates used by SIPE from information provided by the sensors. This appears to be the

most critical issue in getting a high-level planner such as SIPE to control a mobile robot.

Part of the problem is heuristic adequacy - the robot cannot wait ten minutes for a vision

module to turn pixels into predicates while the world is changing. Rosenschein's situated

automata approach holds promise for being able to solve the pixels- to- predicates problem in

a heuristically adequate manner [25].
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Chapter 12

Summary
S

1.

SIPE has extended the classical Al planning paradigm farther than any other system, ad-

dressing the balance between epistemological and heuristic adequacy over several years of

development. It extends the classical approach in several novel ways, the most important be-

ing reasoning about resources, posting constraints, providing a general replanning capability,

and using a deductive causal theory to deduce context-dependent effects. While SIPE builds

upon classical Al planning work, its representations and algorithms have almost nothing to

do with earlier systems because of the complications introduced by the above features. 'F,

As we have seen, the problem addressed by extended classical Al planners involves several

combinatorial problems. These include the truth criterion, the unification problem (wit Ii rea-

sonably powerful constraints on variables), the problem of parallel interactions, the resource ,

allocation problem, the search through the space of possible plans, an(l the search t itrough'

modified plans during replanning. Throughout this report we have stressed the heuristics.

algorithms, and limiting assumptions applied by SIPE to avoid these combinatorial explo-

sions. This has resulted in an efficient system that provides a useful planning capability, . -

evidenced by the examples and runtimes given in this report.

These heuristics and algorithms address problems that must be addressed by all plannim"g

systems. We briefly summarize these techniques here to provide a more unified view of how

heuristic adequacy is accomplished. The heart of the system, the unification algorit hm and

truth criterion, is based on heuristics. The unification algorithm avoids the coml)inatorial

problems introduced by the use of constraints by doing a com)lete check of constraifits only at

4.
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the top level of recursive calls. Tie truth criterion includes several heuristics and algorithms I
for avoiding combinatorial problems and improving efficiency. These include the posting of

pred and not-pred constraints, the implementation of quantifiers, and methods for handling

nonlinearity. The latter are some of the most important heuristics from tile standpoint of

efficiency, but, unfortunately, also some of the most limiting.

Deductive causal theories allow deduction of context-dependent effects in an efficient

manner. SIPE's algorithm controls the triggering of domain rules and efficiently computes

the deductive closure of these rules. One heuristic is used to avoid a combinatorial search p

space: the system will constrain variables in an attempt to match a domain rule, but only

when the two variables are already constrained to be of the same class.

Like other classical planners, SIPE exhibits hierarchical promiscuity by mixing abstraction

levels. Unlike previous planners, SIPE recognizes problems caused by this and provides

various solutions. The system provides the option of the ABSTRIPS solution which to

impose a depth-first, left-to-right planning order that is sensitive to change in abstraction

level. In addition, it provides for delayed application of operators when necessary, but permits

expediential planning in other cases.

No previous classical planner has incorporated a general replanner. Since optimal recovery

from an arbitrary error poses an intractable problem, SIPE again relies on heuristics during

replanning. There is a large space of different ways to modify a plan. SIPE has chosen

the course of trying only one modified plan because (I) constantly checking for problems in %.

planning and correcting them is time consuming, (2) the occurrence of problems means less r

of the old plan is being reused, and (3) there is no guarantee that the plan we are attempting

to reuse is part of a valid solution, while starting over guarantees a solution will be found e

if one exists. Alter trying several algorithms for exploring the space of modified plan, we

concluded that, in all but the simplest cases, intelligently deciding where to replan is too

expensive to implement.

'rhe plan critics use heuristics that are too numerous to mention in detail. SIPE provides

several heuristics for proposing linearizations and phantomizations (e.g., when there is only

one way to phantomize something t hen the phantonizations is propose(]), as well as heuristics

for ordering a set of proposed linearizations. One mechanism the system uses effectively is

its analysis of a proposed linearization by the replanning actions. Using the full power of the
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problem recognizer is a powerful way to determine problems caused by linearizations. Fur-

thermnore, replanninig actions arc used to solve some of the problems so detected which both

corrects invalid plans and mnakes suboptimal plans more efficient. The power to modify plans

in this way makes the system considerably more powerful than previous classical planners.
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Chapter 13

Publications

Several articles describing our researchl have appeared in journals and conference proceedings
over the last several years. This report gathers all of this information in one place, but

synthesizes it in a novel way, describes new capabilities that have not yet been described in

the literature, and updates many outdated descriptions in earlier papers. The publications

listed below, as well as many talks given over the years by Dr. David E. Wilkins at various

workshops and conferences, have assured a high degree of visibility for the research described

• , in this report.

"' Dr. Wilkins also participated in other activities at SRI expense that helped increase

,' awareness of the research described here. During the past year, he attended the DARPA

,, planning workshop in Washington, D.C., and chaired the panel on strategic planning, making

a presentation on the current state of planning research and directions for future research.

lie was also a member of the program committee for the 1987 AAAI conference.

•Journal articles describing work on this project (all by Dr. David E. Wilkins):

"Causal Reasoning in Planning", Computational Intelligcece 4, 1988, forthcoming.

"Recovering fromn Execution Errors in SIPE", Computational Intelligence 1, 1985, pp.
33-15.

"Domain-independent Planning: Representation and Plan Generation", Artificial In-

telligence 22, April 19841, pp. 269-301.
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o Papers in conference proceedings (all by Dr. David E. Wilkins except as noted):

"Ilierarchical Planning: Definition and Implementation", Proceedings of the Suenth
ECA, Brighton, England, 1986, pp. 466-478.

"Representation in a Domain-Independent Planner", Proceedings of IJCAI 83, Karl-
sruhe, Germany, 1983, pp. 733-740.

"Parallelism in Planning and Problem Solving: Reasoning About Resources", ,C5CSI

Conference Proceedings, Saskatoon, Saskatchewan, 1982, pp. 1-7.

"Representing Knowledge in an Interactive Planner", by D.E. Wilkins and Ann Robin-
son, Proceedings of the AAAI 80, Stanford, California, 1980. pp. 148-150.
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